A detailed understanding of the composition,buffering capacity,surface charge property,and metals leaching behavior of bauxite residue is the key to improved management,both in reducing the environmental impact and us...A detailed understanding of the composition,buffering capacity,surface charge property,and metals leaching behavior of bauxite residue is the key to improved management,both in reducing the environmental impact and using the material as an industrial by-product for other applications.In this study,physical,chemical,and surface charge properties of bauxite residue derived from a combined process were investigated.Results indicated that the main alkaline solids in bauxite residue were katoite,sodalite,and calcite.These minerals also lead to a higher acid neutralizing capacity of bauxite residue.Acid neutralizing capacity(ANC)to pH 7.0 of this residue is about 0.9 mol H^+/kg solid.Meanwhile,the Fe-,Al-,and Si-containing minerals in bauxite residue resulted in an active surface;The isoelectric point(IEP)and point of zero charge(PZC)were 7.88 and 7.65,respectively.This also leads to a fact that most of the metals in bauxite residue were adsorbed by these surface charged solids,which makes the metals not readily move under natural or even moderately acidic conditions.The leaching behavior of metals as a function of pH indicated that the metals in bauxite residue present low release concentrations(pH>3).展开更多
Slope failure in loess terrains of Northern China during spring thawing period is closely related to the freeze-thaw cycling that surface soils inevitably experienced. Field surveys were carried out on natural and art...Slope failure in loess terrains of Northern China during spring thawing period is closely related to the freeze-thaw cycling that surface soils inevitably experienced. Field surveys were carried out on natural and artificial slopes in thirteen surveying sites located in the Northern Shaanxi, the center of Loess Plateau, covering five characteristic topographic features including tablelands, ridges, hills, gullies and valleys. Based on the scale that is involved in freeze-thaw cycling, the induced failures can be classified into three main modes, i.e., erosion, peeling and thaw collapse, depending on both high porosity and loose cementation of loess that is easily affected. Model tests on loess slopes with gradients of 53.1°, 45.0° and 33.7° were carried out to reveal the heat transfer, water migration and deformation during slope failure. The surface morphology of slopes was photographed, with flake shaped erosion and cracks noted. For three slope models, time histories for the thermal regime exhibit three obvious cycles of freeze and thaw andthe maximum frost depth develops downwards as freeze-thaw cycling proceeds. Soil water in the unfrozen domain beneath was migrated towards the slope surface, as can be noticed from the considerable change in the unfrozen water content, almost synchronous with the variation of temperature. The displacement in both vertical and horizontal directions varies over time and three obvious cycles can be traced. The residual displacement for each cycle tends to grow and the slopes with higher gradients are more sensitive to potentially sliding during freeze-thaw cycling.展开更多
SAPO-34 molecular sieves were synthesized directly by hydrothermal method with rice husk ash(RHA)used as the silicon source.The crystal structure,composition,surface morphology and acidity of the synthesized products ...SAPO-34 molecular sieves were synthesized directly by hydrothermal method with rice husk ash(RHA)used as the silicon source.The crystal structure,composition,surface morphology and acidity of the synthesized products weresieves had a high crystallinity,without any impure phase.Compared with the SAPO-34 prepared by the silica sol,RHA-SAPO-34 had similar acid properties in strength.The methanol to olefins(MTO)experiments showed that the SAPO-34molecular sieve synthesized from RHA exhibited both a good catalytic activity and ethylene selectivity.展开更多
In this study,we present the characterization of the carbon fibers recovered from the mechanochemical-enhanced recycling of carbon fiber reinforced fibers.The objectives of the study were to investigate the effect of ...In this study,we present the characterization of the carbon fibers recovered from the mechanochemical-enhanced recycling of carbon fiber reinforced fibers.The objectives of the study were to investigate the effect of our modified recycling method on the interfacial properties of recovered fibers.The reinforced plastics were recycled;the recycling efficiency was determined and the recovered fibers were sized using 1 wt%and 3 wt%concentration of(3-aminopropyl)triethoxysilane.We characterized the morphologies utilizing the electron spectroscopy for chemical analysis(ESCA),atomic force microscopy(AFM),FTIR-attenuated total reflection(ATR)spectroscopy and scanning electron microscopy(SEM).Although the surface of the fibers had no cracks,there was evidence of contaminations which affected the interfacial properties and the quality of the fibers.Results showed that the trends in the recovered and virgin fibers were similar with an increase in sizing concentration.The results highlighted the perspectives of increasing the quality of recovered fibers after the recycling process.展开更多
Chemical forms of the phosphate adsorbed on goethite surfaces and characteristics of the coordinategroups which exchange with P on goethite surfaces in solutions with different pll values were investigated.Results sho...Chemical forms of the phosphate adsorbed on goethite surfaces and characteristics of the coordinategroups which exchange with P on goethite surfaces in solutions with different pll values were investigated.Results showed that the chemical forms of P on goethite surfaces changed from the dominance of monodentatecorrdination to that of bidentate one with increasing pH of the solution. By influencing types of phosphateions in solutions, pH affected the chemical forms of P on goethite surfaces. The amount of OH ̄- displacedby phosphate on goethite surfaces was the most at pH 7.0, the second at pH 9.0, and the least at pH 4.5.展开更多
In this account,highly ordered mesoporous MnO_x/TiO_2composite catalysts with efficient catalytic ozonation of phenol degradation were synthesized by the sol–gel method.The surface morphology and properties of the ca...In this account,highly ordered mesoporous MnO_x/TiO_2composite catalysts with efficient catalytic ozonation of phenol degradation were synthesized by the sol–gel method.The surface morphology and properties of the catalysts were characterized by several analytical methods,including SEM,TEM,BET,XRD,FTIR,and XPS.Interestingly,Mn doping was found to improve the degree of order,and the ordered mesoporous structure was optimized at 3%doping.Meanwhile,MnO_xwas highly dispersed in the ordered mesoporous materials to yield good catalytic ozonation performance.Phenol could completely be degraded in 20 min and mineralized at 79%in 60 min.Thus,the catalyst greatly improved the efficiency of degradation and mineralization of phenol when compared to single O_3or O_3+TiO_2.Finally,the reaction mechanism of the catalyst was discussed and found to conform to pseudo-first-order reaction dynamics.展开更多
Carbon capture and storage (CCS) is amongst the possible options to reduce CO2 emission. In the application of CCS, CO2 capture techniques such as adsorption and membrane system have been proposed due to less energy...Carbon capture and storage (CCS) is amongst the possible options to reduce CO2 emission. In the application of CCS, CO2 capture techniques such as adsorption and membrane system have been proposed due to less energy requirement and environmental benign than the absorption process. However, membrane system has drawbacks such as poor membrane reproducibility, scale-up difficulty and high cost of the membrane supports. In this study synthesis and characterization of nanocomposite sodalite (HS)/ceramic membrane via "pore-plugging" hydrothermal synthesis (PPH) protocol for pre- combustion CO2 capture is reported. The morphology and crystallinity of the as-prepared membranes were checked with scanning electron microscopy and X-ray diffraction. Surface chemistry of the membrane was examined with Fourier Transform Infrared spectroscopy. In nanocomposite architecture membranes, zeolite crystals are embedded within the pores of the supports instead of forming thin-film layers of the zeolite crystals on the surface of the supports. Compared to the conventional in situ direct hydrothermal synthesis, membranes obtained from PPH possess higher mechanical strength and thermal stability. In addition, defect control with nanocomposite architecture membranes is possible because the zeolite crystals are embedded within the pores of the support, thereby limiting the maximum defect size to the pore size of the support. Furthermore, the nanocomposite architecture nature of the membranes safeguards the membrane from shocks or abrasion that could promote formation of defects. The aforementioned advantages of the nanocomposite architecture membranes could be beneficial in developing high performance and cost-effective membrane materials for pre-combustion CO2 capture.展开更多
The concentration and chemical speciation of heavy metals including REEs (rare earth elements), Th (thorium) and U (uranium) in domestic sludge and electroplating sludge were investigated, and those of the domes...The concentration and chemical speciation of heavy metals including REEs (rare earth elements), Th (thorium) and U (uranium) in domestic sludge and electroplating sludge were investigated, and those of the domestic sludge were compared with those of natural soil. Removal of heavy metals in electroplating sludge was studied with bio-surfactants (saponin and sophorolipid) by batch and column experiments. The results suggested that heavy metals have greater concentrations and exist as more relatively unstable fraction in sludge than those in Natural soil. Nonionic saponin is more efficient than sophorolipid for the removal of heavy metals from the electroplating sludge, and mainly reacts with carbonate state (i.e., F3) and Fe-Mn oxide state (i.e., F5) fractions. The recovery efficiency of heavy metals in leachates from the electroplate sludge was attained 88%-97%. Saponin can be reused and be a promising and cost-effective material for the removal of heavy metals in sludge.展开更多
Au nanoclusters (AuNCs) hold tremendous potential to be employed in a wide variety of biological applications. Despite the rapid development in the field of NCs synthesis, a comprehensive understanding of how cells ...Au nanoclusters (AuNCs) hold tremendous potential to be employed in a wide variety of biological applications. Despite the rapid development in the field of NCs synthesis, a comprehensive understanding of how cells interact with this class of ultra-small nanoparticles (〈2 nm) having defined sizes and surface chemistry, remains poorly understood. In this study, we show that the choice of the surface ligand used to protect AuNCs can significantly perturb cellular uptake and intracellular redox signaling. A panel of monodisperse, atomically precise AuNCs with different core Au atom number (i.e., Auls, Au18 and Au25) protected with either mercaptopropionic acid (MPA) or glutathione (GSH) capping agent were synthesized and their effects on the generation of intracellular reactive oxygen species (ROS), cytotoxicity and genotoxicity of the NCs were assessed. Both mitochondrial superoxide anion (O2^-) and cytoplasmic ROS were found to be higher in cells exposed to MPA but not GSH capped AuNCs. The unregulated state of intracellular ROS is correlated to the amount of internalized AuNCs. Interestingly, MPA-AuNCs induction of ROS level did not lead to any detrimental cellular effects such as cell death or DNA damage. Instead, it was observed that the increase in redox status corresponded to higher cellular metabolism and proliferative capacity. Our study illustrates that surface chemistry of AuNCs plays a pivotal role in affecting the biological outcomes and the new insights gained will be useful to form the basis of defining specific design rules to enable rational engineering of ultra-small complex nanostructures for biological applications.展开更多
Silicene, a new allotrope of silicon in a twodimensional honeycomb structure, has attracted intensive research interest due to its novel physical and chemical properties. Unlike carbon atoms in graphene, silicon atoms...Silicene, a new allotrope of silicon in a twodimensional honeycomb structure, has attracted intensive research interest due to its novel physical and chemical properties. Unlike carbon atoms in graphene, silicon atoms prefer to adopt sp2/sp3-hybridized state in silicene,enhancing chemical activity on the surface and allowing tunable electronic states by chemical functionalization. The silicene monolayers epitaxially grown on Ag(111) surfaces demonstrate various reconstructions with different electronic structures. In this article, the structure, phonon modes, electronic properties, and chemical properties of silicene are reviewed based on theoretical and experimental works in recent years.展开更多
Surface compositional and phase segregation in an alloy can change its functionality, especially for applications where surface structure and chemistry play a vital role.For instance, the surface status of alloy catal...Surface compositional and phase segregation in an alloy can change its functionality, especially for applications where surface structure and chemistry play a vital role.For instance, the surface status of alloy catalysts significantly affects their catalytic performance for both heterogeneous and electrochemical processes. Surface segregation is believed to be driven by the difference in surface energy to reduce the total free energy of the alloy. However, the atomistic processes during the segregation process remain elusive, especially for gas molecule-induced segregation, where both structural and chemical reordering may occur. Herein, we achieved in-situ atomic-scale visualization of the surface segregation behaviors of a solid solution Cu(Au) alloy under the CO gas by an aberration-corrected environmental transmission electron microscope. CO-induced Cu(Au) surface ordering structures largely change the surface chemistry of the alloy. Further gas exposure at elevated temperature could facilitate Au atom diffusion through a specific "atomic channel" structure for dealloying and clustering on the surface. The segregated Au nanoparticles show rich phase and morphological dynamics interacting with the alloy surface, where the gas adsorption also plays an important role. These atomic insights provide direct evidence for the surface segregation and dealloying mechanisms of bimetallic alloys, and highlight the role of gas adsorbate in these surface processes.展开更多
基金Projects(41501350,41461071,31860170)supported by the National Natural Science Foundation of China
文摘A detailed understanding of the composition,buffering capacity,surface charge property,and metals leaching behavior of bauxite residue is the key to improved management,both in reducing the environmental impact and using the material as an industrial by-product for other applications.In this study,physical,chemical,and surface charge properties of bauxite residue derived from a combined process were investigated.Results indicated that the main alkaline solids in bauxite residue were katoite,sodalite,and calcite.These minerals also lead to a higher acid neutralizing capacity of bauxite residue.Acid neutralizing capacity(ANC)to pH 7.0 of this residue is about 0.9 mol H^+/kg solid.Meanwhile,the Fe-,Al-,and Si-containing minerals in bauxite residue resulted in an active surface;The isoelectric point(IEP)and point of zero charge(PZC)were 7.88 and 7.65,respectively.This also leads to a fact that most of the metals in bauxite residue were adsorbed by these surface charged solids,which makes the metals not readily move under natural or even moderately acidic conditions.The leaching behavior of metals as a function of pH indicated that the metals in bauxite residue present low release concentrations(pH>3).
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51478385, 51208409, 51778528 and 51408486)
文摘Slope failure in loess terrains of Northern China during spring thawing period is closely related to the freeze-thaw cycling that surface soils inevitably experienced. Field surveys were carried out on natural and artificial slopes in thirteen surveying sites located in the Northern Shaanxi, the center of Loess Plateau, covering five characteristic topographic features including tablelands, ridges, hills, gullies and valleys. Based on the scale that is involved in freeze-thaw cycling, the induced failures can be classified into three main modes, i.e., erosion, peeling and thaw collapse, depending on both high porosity and loose cementation of loess that is easily affected. Model tests on loess slopes with gradients of 53.1°, 45.0° and 33.7° were carried out to reveal the heat transfer, water migration and deformation during slope failure. The surface morphology of slopes was photographed, with flake shaped erosion and cracks noted. For three slope models, time histories for the thermal regime exhibit three obvious cycles of freeze and thaw andthe maximum frost depth develops downwards as freeze-thaw cycling proceeds. Soil water in the unfrozen domain beneath was migrated towards the slope surface, as can be noticed from the considerable change in the unfrozen water content, almost synchronous with the variation of temperature. The displacement in both vertical and horizontal directions varies over time and three obvious cycles can be traced. The residual displacement for each cycle tends to grow and the slopes with higher gradients are more sensitive to potentially sliding during freeze-thaw cycling.
基金supported by the Cultivation Foundation of Northeast Petroleum University(2017PYYL-03)
文摘SAPO-34 molecular sieves were synthesized directly by hydrothermal method with rice husk ash(RHA)used as the silicon source.The crystal structure,composition,surface morphology and acidity of the synthesized products weresieves had a high crystallinity,without any impure phase.Compared with the SAPO-34 prepared by the silica sol,RHA-SAPO-34 had similar acid properties in strength.The methanol to olefins(MTO)experiments showed that the SAPO-34molecular sieve synthesized from RHA exhibited both a good catalytic activity and ethylene selectivity.
基金Project(S2598445) supported by the Project for Cooperative R&D between Industry,Academy and Research Institute Funded by the Korea Ministry of SME and Startups in 2018
文摘In this study,we present the characterization of the carbon fibers recovered from the mechanochemical-enhanced recycling of carbon fiber reinforced fibers.The objectives of the study were to investigate the effect of our modified recycling method on the interfacial properties of recovered fibers.The reinforced plastics were recycled;the recycling efficiency was determined and the recovered fibers were sized using 1 wt%and 3 wt%concentration of(3-aminopropyl)triethoxysilane.We characterized the morphologies utilizing the electron spectroscopy for chemical analysis(ESCA),atomic force microscopy(AFM),FTIR-attenuated total reflection(ATR)spectroscopy and scanning electron microscopy(SEM).Although the surface of the fibers had no cracks,there was evidence of contaminations which affected the interfacial properties and the quality of the fibers.Results showed that the trends in the recovered and virgin fibers were similar with an increase in sizing concentration.The results highlighted the perspectives of increasing the quality of recovered fibers after the recycling process.
文摘Chemical forms of the phosphate adsorbed on goethite surfaces and characteristics of the coordinategroups which exchange with P on goethite surfaces in solutions with different pll values were investigated.Results showed that the chemical forms of P on goethite surfaces changed from the dominance of monodentatecorrdination to that of bidentate one with increasing pH of the solution. By influencing types of phosphateions in solutions, pH affected the chemical forms of P on goethite surfaces. The amount of OH ̄- displacedby phosphate on goethite surfaces was the most at pH 7.0, the second at pH 9.0, and the least at pH 4.5.
基金Supported by the National Natural Science Foundation of China(21676139)the Higher Education Natural Science Foundation of Jiangsu Province(15KJA530001)+1 种基金Research Fund of State Key Laboratory of Materials-Oriented Chemical Engineering(ZK201604)the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘In this account,highly ordered mesoporous MnO_x/TiO_2composite catalysts with efficient catalytic ozonation of phenol degradation were synthesized by the sol–gel method.The surface morphology and properties of the catalysts were characterized by several analytical methods,including SEM,TEM,BET,XRD,FTIR,and XPS.Interestingly,Mn doping was found to improve the degree of order,and the ordered mesoporous structure was optimized at 3%doping.Meanwhile,MnO_xwas highly dispersed in the ordered mesoporous materials to yield good catalytic ozonation performance.Phenol could completely be degraded in 20 min and mineralized at 79%in 60 min.Thus,the catalyst greatly improved the efficiency of degradation and mineralization of phenol when compared to single O_3or O_3+TiO_2.Finally,the reaction mechanism of the catalyst was discussed and found to conform to pseudo-first-order reaction dynamics.
文摘Carbon capture and storage (CCS) is amongst the possible options to reduce CO2 emission. In the application of CCS, CO2 capture techniques such as adsorption and membrane system have been proposed due to less energy requirement and environmental benign than the absorption process. However, membrane system has drawbacks such as poor membrane reproducibility, scale-up difficulty and high cost of the membrane supports. In this study synthesis and characterization of nanocomposite sodalite (HS)/ceramic membrane via "pore-plugging" hydrothermal synthesis (PPH) protocol for pre- combustion CO2 capture is reported. The morphology and crystallinity of the as-prepared membranes were checked with scanning electron microscopy and X-ray diffraction. Surface chemistry of the membrane was examined with Fourier Transform Infrared spectroscopy. In nanocomposite architecture membranes, zeolite crystals are embedded within the pores of the supports instead of forming thin-film layers of the zeolite crystals on the surface of the supports. Compared to the conventional in situ direct hydrothermal synthesis, membranes obtained from PPH possess higher mechanical strength and thermal stability. In addition, defect control with nanocomposite architecture membranes is possible because the zeolite crystals are embedded within the pores of the support, thereby limiting the maximum defect size to the pore size of the support. Furthermore, the nanocomposite architecture nature of the membranes safeguards the membrane from shocks or abrasion that could promote formation of defects. The aforementioned advantages of the nanocomposite architecture membranes could be beneficial in developing high performance and cost-effective membrane materials for pre-combustion CO2 capture.
文摘The concentration and chemical speciation of heavy metals including REEs (rare earth elements), Th (thorium) and U (uranium) in domestic sludge and electroplating sludge were investigated, and those of the domestic sludge were compared with those of natural soil. Removal of heavy metals in electroplating sludge was studied with bio-surfactants (saponin and sophorolipid) by batch and column experiments. The results suggested that heavy metals have greater concentrations and exist as more relatively unstable fraction in sludge than those in Natural soil. Nonionic saponin is more efficient than sophorolipid for the removal of heavy metals from the electroplating sludge, and mainly reacts with carbonate state (i.e., F3) and Fe-Mn oxide state (i.e., F5) fractions. The recovery efficiency of heavy metals in leachates from the electroplate sludge was attained 88%-97%. Saponin can be reused and be a promising and cost-effective material for the removal of heavy metals in sludge.
文摘Au nanoclusters (AuNCs) hold tremendous potential to be employed in a wide variety of biological applications. Despite the rapid development in the field of NCs synthesis, a comprehensive understanding of how cells interact with this class of ultra-small nanoparticles (〈2 nm) having defined sizes and surface chemistry, remains poorly understood. In this study, we show that the choice of the surface ligand used to protect AuNCs can significantly perturb cellular uptake and intracellular redox signaling. A panel of monodisperse, atomically precise AuNCs with different core Au atom number (i.e., Auls, Au18 and Au25) protected with either mercaptopropionic acid (MPA) or glutathione (GSH) capping agent were synthesized and their effects on the generation of intracellular reactive oxygen species (ROS), cytotoxicity and genotoxicity of the NCs were assessed. Both mitochondrial superoxide anion (O2^-) and cytoplasmic ROS were found to be higher in cells exposed to MPA but not GSH capped AuNCs. The unregulated state of intracellular ROS is correlated to the amount of internalized AuNCs. Interestingly, MPA-AuNCs induction of ROS level did not lead to any detrimental cellular effects such as cell death or DNA damage. Instead, it was observed that the increase in redox status corresponded to higher cellular metabolism and proliferative capacity. Our study illustrates that surface chemistry of AuNCs plays a pivotal role in affecting the biological outcomes and the new insights gained will be useful to form the basis of defining specific design rules to enable rational engineering of ultra-small complex nanostructures for biological applications.
基金supported by the Australian Research Council(ARC)through Discovery Project(DP 140102581)LIEF Grants(LE100100081 and LE110100099)
文摘Silicene, a new allotrope of silicon in a twodimensional honeycomb structure, has attracted intensive research interest due to its novel physical and chemical properties. Unlike carbon atoms in graphene, silicon atoms prefer to adopt sp2/sp3-hybridized state in silicene,enhancing chemical activity on the surface and allowing tunable electronic states by chemical functionalization. The silicene monolayers epitaxially grown on Ag(111) surfaces demonstrate various reconstructions with different electronic structures. In this article, the structure, phonon modes, electronic properties, and chemical properties of silicene are reviewed based on theoretical and experimental works in recent years.
基金supported by the National Natural Science Foundation of China (21873069 and 11504162)。
文摘Surface compositional and phase segregation in an alloy can change its functionality, especially for applications where surface structure and chemistry play a vital role.For instance, the surface status of alloy catalysts significantly affects their catalytic performance for both heterogeneous and electrochemical processes. Surface segregation is believed to be driven by the difference in surface energy to reduce the total free energy of the alloy. However, the atomistic processes during the segregation process remain elusive, especially for gas molecule-induced segregation, where both structural and chemical reordering may occur. Herein, we achieved in-situ atomic-scale visualization of the surface segregation behaviors of a solid solution Cu(Au) alloy under the CO gas by an aberration-corrected environmental transmission electron microscope. CO-induced Cu(Au) surface ordering structures largely change the surface chemistry of the alloy. Further gas exposure at elevated temperature could facilitate Au atom diffusion through a specific "atomic channel" structure for dealloying and clustering on the surface. The segregated Au nanoparticles show rich phase and morphological dynamics interacting with the alloy surface, where the gas adsorption also plays an important role. These atomic insights provide direct evidence for the surface segregation and dealloying mechanisms of bimetallic alloys, and highlight the role of gas adsorbate in these surface processes.