The catalytic performance of solid catalysts depends on the properties of the catalytically active sites and their accessibility to reactants, which are significantly affected by the microstructure(morphology, shape,...The catalytic performance of solid catalysts depends on the properties of the catalytically active sites and their accessibility to reactants, which are significantly affected by the microstructure(morphology, shape, size, texture, and surface structure) and surface chemistry(elemental components and chemical states). The development of facile and efficient methods for tailoring the microstructure and surface chemistry is a hot topic in catalysis. This contribution reviews the state of the art in modulating the microstructure and surface chemistry of carbocatalysts by both bottom‐up and top‐down strategies and their use in the oxidative dehydrogenation(ODH) and direct dehydrogenation(DDH) of hydrocarbons including light alkanes and ethylbenzene to their corresponding olefins, important building blocks and chemicals like oxygenates. A concept of microstructure and surface chemistry tuning of the carbocatalyst for optimized catalytic performance and also for the fundamental understanding of the structure‐performance relationship is discussed. We also highlight the importance and challenges in modulating the microstructure and surface chemistry of carbocatalysts in ODH and DDH reactions of hydrocarbons for the highly‐efficient, energy‐saving,and clean production of their corresponding olefins.展开更多
基金supported by the National Natural Science Foundation of China(21276041)the Program for New Century Excellent Talents in University of Ministry of Education of China(NCET-12-0079)+1 种基金the Natural Science Foundation of Liaoning Province(2015020200)the Fundamental Research Funds for the Central Universities(DUT15LK41)~~
文摘The catalytic performance of solid catalysts depends on the properties of the catalytically active sites and their accessibility to reactants, which are significantly affected by the microstructure(morphology, shape, size, texture, and surface structure) and surface chemistry(elemental components and chemical states). The development of facile and efficient methods for tailoring the microstructure and surface chemistry is a hot topic in catalysis. This contribution reviews the state of the art in modulating the microstructure and surface chemistry of carbocatalysts by both bottom‐up and top‐down strategies and their use in the oxidative dehydrogenation(ODH) and direct dehydrogenation(DDH) of hydrocarbons including light alkanes and ethylbenzene to their corresponding olefins, important building blocks and chemicals like oxygenates. A concept of microstructure and surface chemistry tuning of the carbocatalyst for optimized catalytic performance and also for the fundamental understanding of the structure‐performance relationship is discussed. We also highlight the importance and challenges in modulating the microstructure and surface chemistry of carbocatalysts in ODH and DDH reactions of hydrocarbons for the highly‐efficient, energy‐saving,and clean production of their corresponding olefins.