A series of Ru/FeOx catalysts were synthesized for the selective hydrogenation of CO2to CO.Detailed characterizations of the catalysts through X‐ray diffraction,X‐ray photoelectron spectroscopy,transmission electron...A series of Ru/FeOx catalysts were synthesized for the selective hydrogenation of CO2to CO.Detailed characterizations of the catalysts through X‐ray diffraction,X‐ray photoelectron spectroscopy,transmission electron microscopy,and temperature‐programmed techniques were performed to directly monitor the surface chemical properties and the catalytic performance to elucidate the reaction mechanism.Highly dispersed Ru species were observed on the surface of FeOx regardless of the initial Ru loading.Varying the Ru loading resulted in changes to the Ru coverage over the FeOx surface,which had a significant impact on the interaction between Ru and adsorbed H,and concomitantly,the H2activation capacity via the ability for H2dissociation.FeOx having0.01%of Ru loading exhibited100%selectivity toward CO resulting from the very strong interaction between Ru and adsorbed H,which limits the desorption of the activated H species and hinders over‐reduction of CO to CH4.Further increasing the Ru loading of the catalysts to above0.01%resulted in the adsorbed H to be easily dissociated,as a result of a weaker interaction with Ru,which allowed excessive CO reduction to produce CH4.Understanding how to selectively design the catalyst by tuning the initial loading of the active phase has broader implications on the design of supported metal catalysts toward preparing liquid fuels from CO2.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences toward preparing liquid fuels from CO2.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
The atomic and electronic structures of T1 and In on Si(111) surfaces are investigated using the firstprinciples total energy calculations. Total energy optimizations show that the energetically favored structure is...The atomic and electronic structures of T1 and In on Si(111) surfaces are investigated using the firstprinciples total energy calculations. Total energy optimizations show that the energetically favored structure is 1/3 ML T1 adsorbed at the T4 sites on Si(111) surfaces. The adsorption energy difference of one T1 adatom between (√3 × √3) and (1 × 1) is less than that of each In adatom. The DOS indicates that TI 6p and Si 3p electrons play a very important role in the formation of the surface states. It is concluded that the bonding of TI adatoms on Si(111) surfaces is mainly polar covalent, which is weaker than that of In on Si(111). So T1 atom is more easy to be migrated than In atom in the same external electric field and the structures of T1 on Si(111) is prone to switch between (√3 × √3) and (1 × 1).展开更多
The potential energy surface for the migration of an extra Ga atom on the GaAs(001) β2(2×4) surfuce was mapped out by performing calculations at the level of analytical bond-order potential. Based on this ca...The potential energy surface for the migration of an extra Ga atom on the GaAs(001) β2(2×4) surfuce was mapped out by performing calculations at the level of analytical bond-order potential. Based on this calculations, we found some lower-energy sites for the adsorption of an extra Ga atom in the surface, which were in agreement with the experimental data. Moreover, many possible pathways for an extra Ga atom diffusing in this surface were revealed. According to the relative energies of the possible pathways, the individual Ga adatoms preferably keep their diffusion in two pathways parallel to the As dimers. This result can be understood using the strain caused by the diffusing Ga atom in the pathways. In addition, the simulated kinetic processes of the extra Ga atom diffusing in different pathways at finite temperatures support the prediction from our calculated potential energy surface.展开更多
Using first-principles calculations, we studied the interaction of methanol with the Pt(100) surface based on generalized gradient approximation. We found that top sites of Pt(100) surface are the favored adsorpti...Using first-principles calculations, we studied the interaction of methanol with the Pt(100) surface based on generalized gradient approximation. We found that top sites of Pt(100) surface are the favored adsorptive positions in energy, and methanol molecule interacts with the Pt surface through oxygen atoms. Moreover, we also explored the possible dissociation pathways of methanol on the Pt surface, and suggested that the products of dissociation can be controlled by the external manipulation.展开更多
The influence of the magnetism of transition metal oxide,nickel(II)oxide(NiO),on its surface reactivity and the dependence of surface reactivity on surface orientation and reactant magnetism were studied by density fu...The influence of the magnetism of transition metal oxide,nickel(II)oxide(NiO),on its surface reactivity and the dependence of surface reactivity on surface orientation and reactant magnetism were studied by density functional theory plus U calculations.We considered five different antiferromagnetically ordered structures and one ferromagnetically ordered structure,NiO(001)and Ni(011)surfaces,paramagnetic molecule NO,and nonparamagnetic molecule CO.The calculations showed that the dependence of surface energies on magnetism was modest,ranging from49to54meV/?2for NiO(001)and from162to172meV/?2for NiO(011).On NiO(001),both molecules preferred the top site of the Ni cation exclusively for all NiO magnetic structures considered,and calculated adsorption energies ranged from?0.33to?0.37eV for CO and from?0.42to?0.46eV for NO.On NiO(011),both molecules preferred the bridge site of two Ni cations irrespective of the NiO magnetism.It was found that rather than the long‐range magnetism of bulk NiO,the local magnetic order of two coordinated Ni cations binding to the adsorbed molecule had a pronounced influence on adsorption.The calculated NO adsorption energy at the(↑↓)bridge sites ranged from?0.99to?1.05eV,and become stronger at the(↑↑)bridge sites with values of?1.21to?1.30eV.For CO,although the calculated adsorption energies at the(↑↓)bridge sites(?0.73to?0.75eV)were very close to those at the(↑↑)bridge sites(?0.71to?0.72eV),their electron hybridizations were very different.The present work highlights the importance of the local magnetic order of transition metal oxides on molecular adsorption at multi‐fold sites.展开更多
The activities of neutral, anionic, and cationic Au(111), Au(100), surface towards NO adsorption have been studied by performing and Au(310) surfaces, as well as an Au adatom on Au(111) density functional theo...The activities of neutral, anionic, and cationic Au(111), Au(100), surface towards NO adsorption have been studied by performing and Au(310) surfaces, as well as an Au adatom on Au(111) density functional theory calculations. It was found that the activity of gold increases as the coordination number of the gold atoms decreases, and that the cationic surfaces are generally more active than the neutral and anionic surfaces. The activity of Au surfaces towards NO adsorption is attributable to the presence of low coordinated gold atoms and the concentration of positive charges on the surface. The results may enrich the understanding of NO adsorption on Au surfaces.展开更多
Understanding the processes of protein adsorption/desorption on nanopartieles' surfaces is important for the development of new nanotechnology involving biomaterials; however, an atomistic resolution picture for thes...Understanding the processes of protein adsorption/desorption on nanopartieles' surfaces is important for the development of new nanotechnology involving biomaterials; however, an atomistic resolution picture for these processes and for the simultaneous protein conformational change is missing. Here, we report the adsorption of protein GB 1 on a polystyrene nanoparticle surface using atomistic molecular dynamic simulations. Enabled by metadynamics, we explored the relevant phase space and identified three protein states, each involving both the adsorbed and desorbed modes. We also studied the change of the secondary and tertiary structures of GB 1 during adsorption and the dominant interactions between the protein and surface in different adsorption stages. The results we obtained from simulation were found to be more adequate and complete than the previous one. We believe the model presented in this paper, in comparison with the previous ones, is a better theoretical model to understand and explain the experimental results.展开更多
Alloyed nanoparticles with core-shell structures provide a favorable model to modulate interfacial interaction and surface structures at the atomic level,which is important for designing electrocatalysts with high act...Alloyed nanoparticles with core-shell structures provide a favorable model to modulate interfacial interaction and surface structures at the atomic level,which is important for designing electrocatalysts with high activity and durability.Herein,core-shell structured Pd3M@Pt/C nanoparticles with binary PdM alloy cores(M=Fe,Ni,and Co)and a monolayer Pt shell were successfully synthesized with diverse interfaces.Among these,Pd3Fe@Pt/C exhibited the best oxygen reduction reaction catalytic performance,roughly 5.4 times more than that of the commercial Pt/C catalyst used as reference.The significantly enhanced activity is attributed to the combined effects of strain engineering,interfacial electron transfer,and improved Pt utilization.Density functional theory simulations and extended X-ray absorption fine structure analysis revealed that engineering the alloy core with moderate lattice mismatch and alloy composition(Pd3Fe)optimizes the surface oxygen adsorption energy,thereby rendering excellent electrocatalytic activity.Future researches may use this study as a guide on the construction of highly effective core-shell electrocatalysts for various energy conversions and other applications.展开更多
The interface between a two-dimensional(2D)atomic crystal and a metal surface can be regarded as a nanoreactor, in which molecule adsorption and catalytic reactions may occur. In this work, we demonstrate that oxygen ...The interface between a two-dimensional(2D)atomic crystal and a metal surface can be regarded as a nanoreactor, in which molecule adsorption and catalytic reactions may occur. In this work, we demonstrate that oxygen intercalation and desorption occur at the interface between hexagonal boron nitride(h-BN) overlayer and Pt(111) surface by using near-ambient pressure X-ray photoelectron spectroscopy(NAP-XPS), photoemission electron microscopy, and low-energy electron microscopy.Furthermore, CO oxidation under the h-BN cover was also observed by NAP-XPS. The present results indicate that the nanospace under the 2D cover can be used for surface reactions, in which novel surface chemistry may be induced by the nanoconfinement effect.展开更多
基金supported by the National Natural Science Foundation of China(21476145,91645117)China Postdoctoral Science Foundation(2016M600221)~~
文摘A series of Ru/FeOx catalysts were synthesized for the selective hydrogenation of CO2to CO.Detailed characterizations of the catalysts through X‐ray diffraction,X‐ray photoelectron spectroscopy,transmission electron microscopy,and temperature‐programmed techniques were performed to directly monitor the surface chemical properties and the catalytic performance to elucidate the reaction mechanism.Highly dispersed Ru species were observed on the surface of FeOx regardless of the initial Ru loading.Varying the Ru loading resulted in changes to the Ru coverage over the FeOx surface,which had a significant impact on the interaction between Ru and adsorbed H,and concomitantly,the H2activation capacity via the ability for H2dissociation.FeOx having0.01%of Ru loading exhibited100%selectivity toward CO resulting from the very strong interaction between Ru and adsorbed H,which limits the desorption of the activated H species and hinders over‐reduction of CO to CH4.Further increasing the Ru loading of the catalysts to above0.01%resulted in the adsorbed H to be easily dissociated,as a result of a weaker interaction with Ru,which allowed excessive CO reduction to produce CH4.Understanding how to selectively design the catalyst by tuning the initial loading of the active phase has broader implications on the design of supported metal catalysts toward preparing liquid fuels from CO2.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences toward preparing liquid fuels from CO2.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
基金Supported by National Natural Science Foundation of China under Grant No.60476047Program for Science & Technology Innovation Talents in Universities of Henan Province under Grant No.2008HASTIT030
文摘The atomic and electronic structures of T1 and In on Si(111) surfaces are investigated using the firstprinciples total energy calculations. Total energy optimizations show that the energetically favored structure is 1/3 ML T1 adsorbed at the T4 sites on Si(111) surfaces. The adsorption energy difference of one T1 adatom between (√3 × √3) and (1 × 1) is less than that of each In adatom. The DOS indicates that TI 6p and Si 3p electrons play a very important role in the formation of the surface states. It is concluded that the bonding of TI adatoms on Si(111) surfaces is mainly polar covalent, which is weaker than that of In on Si(111). So T1 atom is more easy to be migrated than In atom in the same external electric field and the structures of T1 on Si(111) is prone to switch between (√3 × √3) and (1 × 1).
基金ACKNOWLEDGMENTS This work was supported by the Fund of University of Science and Technology of China, the Fund of Chinese Academy of Science, and the National Natural Science Foundation of China (No.50121202 and No.60176024).
文摘The potential energy surface for the migration of an extra Ga atom on the GaAs(001) β2(2×4) surfuce was mapped out by performing calculations at the level of analytical bond-order potential. Based on this calculations, we found some lower-energy sites for the adsorption of an extra Ga atom in the surface, which were in agreement with the experimental data. Moreover, many possible pathways for an extra Ga atom diffusing in this surface were revealed. According to the relative energies of the possible pathways, the individual Ga adatoms preferably keep their diffusion in two pathways parallel to the As dimers. This result can be understood using the strain caused by the diffusing Ga atom in the pathways. In addition, the simulated kinetic processes of the extra Ga atom diffusing in different pathways at finite temperatures support the prediction from our calculated potential energy surface.
文摘Using first-principles calculations, we studied the interaction of methanol with the Pt(100) surface based on generalized gradient approximation. We found that top sites of Pt(100) surface are the favored adsorptive positions in energy, and methanol molecule interacts with the Pt surface through oxygen atoms. Moreover, we also explored the possible dissociation pathways of methanol on the Pt surface, and suggested that the products of dissociation can be controlled by the external manipulation.
基金supported by the National Natural Science Foundation of China(91645202)the National Key R&D Program of China(2017YFB602205)+1 种基金the National Basic Research Program of China(2013CB834603)the Frontier Science Key Project of Chinese Academy of Sciences(QYZDJ-SSW-SLH054)~~
文摘The influence of the magnetism of transition metal oxide,nickel(II)oxide(NiO),on its surface reactivity and the dependence of surface reactivity on surface orientation and reactant magnetism were studied by density functional theory plus U calculations.We considered five different antiferromagnetically ordered structures and one ferromagnetically ordered structure,NiO(001)and Ni(011)surfaces,paramagnetic molecule NO,and nonparamagnetic molecule CO.The calculations showed that the dependence of surface energies on magnetism was modest,ranging from49to54meV/?2for NiO(001)and from162to172meV/?2for NiO(011).On NiO(001),both molecules preferred the top site of the Ni cation exclusively for all NiO magnetic structures considered,and calculated adsorption energies ranged from?0.33to?0.37eV for CO and from?0.42to?0.46eV for NO.On NiO(011),both molecules preferred the bridge site of two Ni cations irrespective of the NiO magnetism.It was found that rather than the long‐range magnetism of bulk NiO,the local magnetic order of two coordinated Ni cations binding to the adsorbed molecule had a pronounced influence on adsorption.The calculated NO adsorption energy at the(↑↓)bridge sites ranged from?0.99to?1.05eV,and become stronger at the(↑↑)bridge sites with values of?1.21to?1.30eV.For CO,although the calculated adsorption energies at the(↑↓)bridge sites(?0.73to?0.75eV)were very close to those at the(↑↑)bridge sites(?0.71to?0.72eV),their electron hybridizations were very different.The present work highlights the importance of the local magnetic order of transition metal oxides on molecular adsorption at multi‐fold sites.
基金supported by the National Natural Science Foundation of China (20873076 and 20873075)
文摘The activities of neutral, anionic, and cationic Au(111), Au(100), surface towards NO adsorption have been studied by performing and Au(310) surfaces, as well as an Au adatom on Au(111) density functional theory calculations. It was found that the activity of gold increases as the coordination number of the gold atoms decreases, and that the cationic surfaces are generally more active than the neutral and anionic surfaces. The activity of Au surfaces towards NO adsorption is attributable to the presence of low coordinated gold atoms and the concentration of positive charges on the surface. The results may enrich the understanding of NO adsorption on Au surfaces.
基金supported by the National Natural Science Foundation of China(Grant Nos.11774158,11274157,31671026,and 11334004)the National Basic Research and Development Program of China(Grant No.2013CB834100)Priority Academic Program Development(PAPD)Project of Jiangsu Higher Education Institutions
文摘Understanding the processes of protein adsorption/desorption on nanopartieles' surfaces is important for the development of new nanotechnology involving biomaterials; however, an atomistic resolution picture for these processes and for the simultaneous protein conformational change is missing. Here, we report the adsorption of protein GB 1 on a polystyrene nanoparticle surface using atomistic molecular dynamic simulations. Enabled by metadynamics, we explored the relevant phase space and identified three protein states, each involving both the adsorbed and desorbed modes. We also studied the change of the secondary and tertiary structures of GB 1 during adsorption and the dominant interactions between the protein and surface in different adsorption stages. The results we obtained from simulation were found to be more adequate and complete than the previous one. We believe the model presented in this paper, in comparison with the previous ones, is a better theoretical model to understand and explain the experimental results.
基金the Natural Science Foundation of Hainan Province(2019RC007)the National Natural Science Foundation of China(21805104,21606050,21905056,21905045,and U1801257)+3 种基金the Natural Science Foundation of Guangdong Province(2018A0303130239,2018A0303130223)Pearl River Science and Technology New Star Project(201806010039)the Start-up Research Foundation of Hainan University(KYQD(ZR)1908)Research Fund Program of Key Laboratory of Fuel Cell Technology of Guangdong Province。
文摘Alloyed nanoparticles with core-shell structures provide a favorable model to modulate interfacial interaction and surface structures at the atomic level,which is important for designing electrocatalysts with high activity and durability.Herein,core-shell structured Pd3M@Pt/C nanoparticles with binary PdM alloy cores(M=Fe,Ni,and Co)and a monolayer Pt shell were successfully synthesized with diverse interfaces.Among these,Pd3Fe@Pt/C exhibited the best oxygen reduction reaction catalytic performance,roughly 5.4 times more than that of the commercial Pt/C catalyst used as reference.The significantly enhanced activity is attributed to the combined effects of strain engineering,interfacial electron transfer,and improved Pt utilization.Density functional theory simulations and extended X-ray absorption fine structure analysis revealed that engineering the alloy core with moderate lattice mismatch and alloy composition(Pd3Fe)optimizes the surface oxygen adsorption energy,thereby rendering excellent electrocatalytic activity.Future researches may use this study as a guide on the construction of highly effective core-shell electrocatalysts for various energy conversions and other applications.
基金supported by the National Natural Science Foundation of China(21222305,21373208,and21033009)the National Basic Research Program of China(2011CB932704,2013CB933100,and 2013CB834603)+1 种基金the Key Research Program of the Chinese Academy of Science(KGZD-EWT05)The Advanced Light Source and beamlines 11.0.2 and 9.3.1 are supported by the Director,Office of Energy Research,Office of Basic Energy Sciences,and Chemical Sciences Division of the US Department of Energy under contracts No.DE-AC02-05CH11231
文摘The interface between a two-dimensional(2D)atomic crystal and a metal surface can be regarded as a nanoreactor, in which molecule adsorption and catalytic reactions may occur. In this work, we demonstrate that oxygen intercalation and desorption occur at the interface between hexagonal boron nitride(h-BN) overlayer and Pt(111) surface by using near-ambient pressure X-ray photoelectron spectroscopy(NAP-XPS), photoemission electron microscopy, and low-energy electron microscopy.Furthermore, CO oxidation under the h-BN cover was also observed by NAP-XPS. The present results indicate that the nanospace under the 2D cover can be used for surface reactions, in which novel surface chemistry may be induced by the nanoconfinement effect.