A global atmospheric general circulation model and an asynchronously coupled global atmosphere-biome model are used to simulate vegetation feedback at the mid-Pliocene approximately 3.3 to 3.0 million years ago.For th...A global atmospheric general circulation model and an asynchronously coupled global atmosphere-biome model are used to simulate vegetation feedback at the mid-Pliocene approximately 3.3 to 3.0 million years ago.For that period,the simulated vegetation differed from present conditions at 62% of the global ice-free land surface.Vegetation feedback had little overall impact on the global climate of the mid-Pliocene.At the regional scale,however,the interactive vegetation led to statistically significant increases in annual temperature over Greenland,the high latitudes of North America,the mid-high latitudes of eastern Eurasia,and westem Tibet,and reductions in most of the land areas at low latitudes,owing to vegetation-induced changes in surface albedo.展开更多
This paper presents an inexpensive method for self-similarity based editing of real-world 3D surface textures by using height and albedo maps. Unlike self-similarity based 2D texture editing approaches which only make...This paper presents an inexpensive method for self-similarity based editing of real-world 3D surface textures by using height and albedo maps. Unlike self-similarity based 2D texture editing approaches which only make changes to pixel color or inten- sity values, this technique also allows surface geometry and reflectance of the captured 3D surface textures to be edited and relit us- ing illumination conditions and viewing angles that differ from those of the original. A single editing operation at a given location affects all similar areas and produces changes on all images of the sample rendered under different conditions. Since surface height and albedo maps can be used to describe seabed topography and geologic features, which play important roles in many oceanic proc- esses, the proposed method can be effectively employed in applications regarding visualization and simulation of oceanic phenom- ena.展开更多
Diurnal, seasonal and interannual variations of surface albedo of degraded grassland and cropland surfaces at a semiarid area of Tognyu have been investigated based on the continuous three years observational data fro...Diurnal, seasonal and interannual variations of surface albedo of degraded grassland and cropland surfaces at a semiarid area of Tognyu have been investigated based on the continuous three years observational data from 2003 to 2005. The changes of surface albedo with solar elevation angle and soil moisture have been discussed also. It has been found that surface albedo has almost the same diurnal and seasonal variations on degraded grassland and cropland surfaces in the semiarid area, while sur- face albedo is large in winter and small in summer. The diurnal variation of the surface albedo has re- lationship with the weather condition. The diurnal cycle of the surface albedo likes the "U" shape curve in sunny day, while it is low-high after the rain, and high-low after the snow. The surface albedo has large variation in cloudy day, while it has no any variation in overcast day. The large difference of the surface albedo can be 0.04 in winter between two land surfaces, because the snow has large effects on the surface albedo in winter. The rainfall is an important factor in summer on the surface albedo, while the difference of the surface albedo is 0.01 only between two land surfaces. The differences of the surface albedo can also be 0.04 in autumn due to vegetation growing. The seasonal-average surface albeo from 2003―2005 is 0.25, 0.22, 0.24, 0.32 respectively in spring, summer, autumn and winter on the degraded grassland surface,while it is 0.25, 0.21, 0.22, 0.33 respectively in spring, summer, autumn and winter on the cropland surface. The surface albedo becomes smaller with the increase of solar elevation angle. When the solar elevation angle is greater than 40°, the surface albedo changes very little and tends to be a constant. The surface albedo has negative exponent functions with soil moisture in the growing season.展开更多
The Scanning Imaging Absorption spectroMeter for Atmospheric ChartographY(SCIAMACHY) instrument,launched on the Envisat satellite in March 2002,measures the earthshine radiance,simultaneously from the ultraviolet(UV) ...The Scanning Imaging Absorption spectroMeter for Atmospheric ChartographY(SCIAMACHY) instrument,launched on the Envisat satellite in March 2002,measures the earthshine radiance,simultaneously from the ultraviolet(UV) to the near infrared(NIR),in the three viewing geometries:nadir,limb,and occultation.These measurements are used to retrieve both the total amount and vertical profiles of a large number of atmospheric constituents.In this paper,stratospheric ozone profiles between 15 and 40 km altitude are retrieved on 3 km grids from SCIAMACHY limb scattered radiance in the Chappuis-Wulf band.The study employs a new multiplicative algebraic reconstruction technique(MART) coupled with the radiative transfer model SCIATRAN.This technique is outstanding in that more than one measurement vector element can be used to retrieve the ozone density at any altitude.Furthermore,it is straightforward to understand,easy to implement and likely to produce stable results.Radiance normalization and wavelength pairing is applied to radiance as an intermediate step,using the wavelengths 525 nm,600 nm and 675 nm.The sensitivity of ozone retrieval by this method to tangent altitude pointing,surface albedo,aerosol and cloud parameters is studied,and the results show that the retrieval impact due to tangent altitude pointing bias is the biggest up to 75% with 1 km shift,and the impact of albedo is limited within 5%.The effect of boundary visibility and cloud parameters can be ignored since their impact is too small.The effectiveness of the retrieval is demonstrated using a set of coincident SCIAMACHY products at Hefei that shows a mean bias of less than 12% between 15 and 40 km,and with a better accuracy of 5% from 16 to 36 km.展开更多
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(KZCX2-EW-QN202)the National Natural Science Foundation of China(40975050 and41175072)
文摘A global atmospheric general circulation model and an asynchronously coupled global atmosphere-biome model are used to simulate vegetation feedback at the mid-Pliocene approximately 3.3 to 3.0 million years ago.For that period,the simulated vegetation differed from present conditions at 62% of the global ice-free land surface.Vegetation feedback had little overall impact on the global climate of the mid-Pliocene.At the regional scale,however,the interactive vegetation led to statistically significant increases in annual temperature over Greenland,the high latitudes of North America,the mid-high latitudes of eastern Eurasia,and westem Tibet,and reductions in most of the land areas at low latitudes,owing to vegetation-induced changes in surface albedo.
文摘This paper presents an inexpensive method for self-similarity based editing of real-world 3D surface textures by using height and albedo maps. Unlike self-similarity based 2D texture editing approaches which only make changes to pixel color or inten- sity values, this technique also allows surface geometry and reflectance of the captured 3D surface textures to be edited and relit us- ing illumination conditions and viewing angles that differ from those of the original. A single editing operation at a given location affects all similar areas and produces changes on all images of the sample rendered under different conditions. Since surface height and albedo maps can be used to describe seabed topography and geologic features, which play important roles in many oceanic proc- esses, the proposed method can be effectively employed in applications regarding visualization and simulation of oceanic phenom- ena.
基金the National Basic Research Program of China (973 Program, 2006CB500401)partly by the Chinese Academy of Sciences (Grant No. KZCX2-YW-219)
文摘Diurnal, seasonal and interannual variations of surface albedo of degraded grassland and cropland surfaces at a semiarid area of Tognyu have been investigated based on the continuous three years observational data from 2003 to 2005. The changes of surface albedo with solar elevation angle and soil moisture have been discussed also. It has been found that surface albedo has almost the same diurnal and seasonal variations on degraded grassland and cropland surfaces in the semiarid area, while sur- face albedo is large in winter and small in summer. The diurnal variation of the surface albedo has re- lationship with the weather condition. The diurnal cycle of the surface albedo likes the "U" shape curve in sunny day, while it is low-high after the rain, and high-low after the snow. The surface albedo has large variation in cloudy day, while it has no any variation in overcast day. The large difference of the surface albedo can be 0.04 in winter between two land surfaces, because the snow has large effects on the surface albedo in winter. The rainfall is an important factor in summer on the surface albedo, while the difference of the surface albedo is 0.01 only between two land surfaces. The differences of the surface albedo can also be 0.04 in autumn due to vegetation growing. The seasonal-average surface albeo from 2003―2005 is 0.25, 0.22, 0.24, 0.32 respectively in spring, summer, autumn and winter on the degraded grassland surface,while it is 0.25, 0.21, 0.22, 0.33 respectively in spring, summer, autumn and winter on the cropland surface. The surface albedo becomes smaller with the increase of solar elevation angle. When the solar elevation angle is greater than 40°, the surface albedo changes very little and tends to be a constant. The surface albedo has negative exponent functions with soil moisture in the growing season.
基金supported by the National High Technology Research and Development Program (Grant No 2006AA12Z102)Graduate Innovation Fund of Jilin University (Grant No20091023)
文摘The Scanning Imaging Absorption spectroMeter for Atmospheric ChartographY(SCIAMACHY) instrument,launched on the Envisat satellite in March 2002,measures the earthshine radiance,simultaneously from the ultraviolet(UV) to the near infrared(NIR),in the three viewing geometries:nadir,limb,and occultation.These measurements are used to retrieve both the total amount and vertical profiles of a large number of atmospheric constituents.In this paper,stratospheric ozone profiles between 15 and 40 km altitude are retrieved on 3 km grids from SCIAMACHY limb scattered radiance in the Chappuis-Wulf band.The study employs a new multiplicative algebraic reconstruction technique(MART) coupled with the radiative transfer model SCIATRAN.This technique is outstanding in that more than one measurement vector element can be used to retrieve the ozone density at any altitude.Furthermore,it is straightforward to understand,easy to implement and likely to produce stable results.Radiance normalization and wavelength pairing is applied to radiance as an intermediate step,using the wavelengths 525 nm,600 nm and 675 nm.The sensitivity of ozone retrieval by this method to tangent altitude pointing,surface albedo,aerosol and cloud parameters is studied,and the results show that the retrieval impact due to tangent altitude pointing bias is the biggest up to 75% with 1 km shift,and the impact of albedo is limited within 5%.The effect of boundary visibility and cloud parameters can be ignored since their impact is too small.The effectiveness of the retrieval is demonstrated using a set of coincident SCIAMACHY products at Hefei that shows a mean bias of less than 12% between 15 and 40 km,and with a better accuracy of 5% from 16 to 36 km.