A study was conducted in eight districts, viz., Faridkot, Moga, Ferozepur, Muktsar, Bathinda, Mansa, Barnala and Sangrur in south-western part of the Punjab, India to characterize aquifer strata by preparing a fence d...A study was conducted in eight districts, viz., Faridkot, Moga, Ferozepur, Muktsar, Bathinda, Mansa, Barnala and Sangrur in south-western part of the Punjab, India to characterize aquifer strata by preparing a fence diagram depicting sub-surface strata and distribution of groundwater quality. The sub-surface lithology drilled upto a depth of 60 m reveal the presence of top most layer of impervious strata comprising of clay upto the depth of 2 m to 5 m which impedes the percolation of surface runoff into the soil leading to surface flooding and water logging even in areas having saturated zone beyond the depth of 5 m. Thick pervious strata of 45 m to 50 m thickness is encountered in central and south-sentral part of the study area comprising of Bathinda, Muktsar and Mansa districts which at certain places are separated by one or two thin layers of impervious or semi-pervious strata comprising of clay and sand occasionally associated with "kankar" of thickness ranging between 2 m to 5 m. The northern, western and eastern parts, however, exhibit three to four layered pervious zones ranging in thickness from 5 m to 25 m separated by thin layers of impervious and semi pervious strata. The groundwater quality in about 6% of the study area in eight districts is fit, 18% is marginal and 76% is unfit for irrigation purpose.展开更多
The aim of this research was to find out whether the effect of chemical corrosion changes mechanical characteristics of surface layers of wooden construction elements. Degradation of the surface layers of wood was cau...The aim of this research was to find out whether the effect of chemical corrosion changes mechanical characteristics of surface layers of wooden construction elements. Degradation of the surface layers of wood was caused by chemical reactions of the basic substances of wood mass with compounds contained in antifire coatings. Fire retardants containing corrosive substances were often and repeatedly used in the Czech Republic on many wooden building constructions. This process of chemical corrosion is in practise called as "surface defibering of wood". This contribution presents standard and special experimental methods used for measuring the selected mechanical characteristics (compression strength, tension strength, bending strength, hardness and impact resistance) in the damaged surface layer of wooden construction elements. The material for experimental measuring was a construction element removed from a historical roof (ca 150 years old). Mechanical characteristics of the surface layer of the defibered element were compared with the values measured in the deeper subsurface layer of non-damaged wood. The results of the experiments proved loss of cohesive strength and decrease of mechanical characteristics of wood only in a thin surface layer.展开更多
Utilizing experimental data of the atmospheric surface layer in the Gobi Oasis of Jinta in a comparative study, we demonstrate that under the condition of unstable stratification, the normalization variances of temper...Utilizing experimental data of the atmospheric surface layer in the Gobi Oasis of Jinta in a comparative study, we demonstrate that under the condition of unstable stratification, the normalization variances of temperature in the oasis and Gobi Desert meetφs (z∧)= φθ(Z/∧) =αθ(-Z/ ∧)-1/3 while normalization variances of both humidity and CO2 in the oasis meet φ(Z/∧)= αs (1 - βs z /∧)-1/3 ; the normalization variance of temperature in the oasis is large due to disturbance by advection, whereas variance of CO2 in the Gobi Desert has certain degree of deviation relative to Monin-Obukhov (M-O) scaling, and humidity variance completely deviates from variance M-O scaling. The above result indicates that under the condition of advection, hu-midity variance meets the relation δ2 sm=D2 δ2SA + δ2SB and it is determined by relative magnitude of scalar variance of ad- midity variance meets the relation δsm = D2δsA + δsB vection transport. Our study reveals that, if the scalar variance of humidity or CO2 transported by advection is much larger than local scalar variance, observation value of scalar variance will deviate from M-O scaling; when scalar variance of advection transport is close to or less than local scalar variance, the observation value of scalar variance approximately meets M-O scal- ing.展开更多
The atmospheric boundary layer (ABL) is an important physical characteristic of the Earth's atmosphere. Compared with the typical ABL, the ABL in arid regions has distinct features and is formed by particular mecha...The atmospheric boundary layer (ABL) is an important physical characteristic of the Earth's atmosphere. Compared with the typical ABL, the ABL in arid regions has distinct features and is formed by particular mechanisms. In this paper, the depth of the diurnal and nocturnal ABLs and their related thermodynamic features of land surface processes, including net radiation, the ground-air temperature difference and sensible heat flux, under typical summer and winter conditions are discussed on the basis of comprehensive observations of the ABL and thermodynamic processes at the land surface carried out in the extreme arid zone of Dunhuang. The relationships of the ABL depth in the development and maintenance stages with these thermodynamic features are also investigated. The results show that the depth of the ABL is closely correlated with the thermodynamic features in both development and maintenance stages and more energy is consumed in the development stage. Further analysis indicates that wind velocity also affects ABL development, especially the development of a stable boundary layer in winter. Taken together, the analysis results indicate that extremely strong thermodynamic processes at the land surface are the main driving factor for the formation of a deep ABL in an arid region.展开更多
文摘A study was conducted in eight districts, viz., Faridkot, Moga, Ferozepur, Muktsar, Bathinda, Mansa, Barnala and Sangrur in south-western part of the Punjab, India to characterize aquifer strata by preparing a fence diagram depicting sub-surface strata and distribution of groundwater quality. The sub-surface lithology drilled upto a depth of 60 m reveal the presence of top most layer of impervious strata comprising of clay upto the depth of 2 m to 5 m which impedes the percolation of surface runoff into the soil leading to surface flooding and water logging even in areas having saturated zone beyond the depth of 5 m. Thick pervious strata of 45 m to 50 m thickness is encountered in central and south-sentral part of the study area comprising of Bathinda, Muktsar and Mansa districts which at certain places are separated by one or two thin layers of impervious or semi-pervious strata comprising of clay and sand occasionally associated with "kankar" of thickness ranging between 2 m to 5 m. The northern, western and eastern parts, however, exhibit three to four layered pervious zones ranging in thickness from 5 m to 25 m separated by thin layers of impervious and semi pervious strata. The groundwater quality in about 6% of the study area in eight districts is fit, 18% is marginal and 76% is unfit for irrigation purpose.
文摘The aim of this research was to find out whether the effect of chemical corrosion changes mechanical characteristics of surface layers of wooden construction elements. Degradation of the surface layers of wood was caused by chemical reactions of the basic substances of wood mass with compounds contained in antifire coatings. Fire retardants containing corrosive substances were often and repeatedly used in the Czech Republic on many wooden building constructions. This process of chemical corrosion is in practise called as "surface defibering of wood". This contribution presents standard and special experimental methods used for measuring the selected mechanical characteristics (compression strength, tension strength, bending strength, hardness and impact resistance) in the damaged surface layer of wooden construction elements. The material for experimental measuring was a construction element removed from a historical roof (ca 150 years old). Mechanical characteristics of the surface layer of the defibered element were compared with the values measured in the deeper subsurface layer of non-damaged wood. The results of the experiments proved loss of cohesive strength and decrease of mechanical characteristics of wood only in a thin surface layer.
基金supported by the National Basic Research Program of China (Grant No.2010CB951701-2)the National Natural Science Foundation of China (Grant Nos. 91025011, 41130961)the Pingliang Station of Lightning and Hail Research, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences
文摘Utilizing experimental data of the atmospheric surface layer in the Gobi Oasis of Jinta in a comparative study, we demonstrate that under the condition of unstable stratification, the normalization variances of temperature in the oasis and Gobi Desert meetφs (z∧)= φθ(Z/∧) =αθ(-Z/ ∧)-1/3 while normalization variances of both humidity and CO2 in the oasis meet φ(Z/∧)= αs (1 - βs z /∧)-1/3 ; the normalization variance of temperature in the oasis is large due to disturbance by advection, whereas variance of CO2 in the Gobi Desert has certain degree of deviation relative to Monin-Obukhov (M-O) scaling, and humidity variance completely deviates from variance M-O scaling. The above result indicates that under the condition of advection, hu-midity variance meets the relation δ2 sm=D2 δ2SA + δ2SB and it is determined by relative magnitude of scalar variance of ad- midity variance meets the relation δsm = D2δsA + δsB vection transport. Our study reveals that, if the scalar variance of humidity or CO2 transported by advection is much larger than local scalar variance, observation value of scalar variance will deviate from M-O scaling; when scalar variance of advection transport is close to or less than local scalar variance, the observation value of scalar variance approximately meets M-O scal- ing.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40830957, 40805009)
文摘The atmospheric boundary layer (ABL) is an important physical characteristic of the Earth's atmosphere. Compared with the typical ABL, the ABL in arid regions has distinct features and is formed by particular mechanisms. In this paper, the depth of the diurnal and nocturnal ABLs and their related thermodynamic features of land surface processes, including net radiation, the ground-air temperature difference and sensible heat flux, under typical summer and winter conditions are discussed on the basis of comprehensive observations of the ABL and thermodynamic processes at the land surface carried out in the extreme arid zone of Dunhuang. The relationships of the ABL depth in the development and maintenance stages with these thermodynamic features are also investigated. The results show that the depth of the ABL is closely correlated with the thermodynamic features in both development and maintenance stages and more energy is consumed in the development stage. Further analysis indicates that wind velocity also affects ABL development, especially the development of a stable boundary layer in winter. Taken together, the analysis results indicate that extremely strong thermodynamic processes at the land surface are the main driving factor for the formation of a deep ABL in an arid region.