This work aimed to prepare the nanospike surface-modified bionic porous titanium implants that feature favorableosteointegration performance and anti-bacterial functions.The implant was prepared using freeze casting,a...This work aimed to prepare the nanospike surface-modified bionic porous titanium implants that feature favorableosteointegration performance and anti-bacterial functions.The implant was prepared using freeze casting,and nanospikesurface-modification of the implant was performed using thermal oxidation.The pore morphology and size,mechanical properties,and osteogenic performance of the implants were analyzed and discussed.The results showed that when the volume ratio of titaniumpowder in slurry was set to be10%,the porosity,pore diameter,compressive strength,and elastic modulus of the porous sampleswere(58.32±1.08)%,(126.17±18.64)μm,(58.51±20.38)MPa and(1.70±0.52)GPa,respectively.When the porous sample wassintered at a temperature of1200°C for1h,these values were(58.24±1.50)%,(124.16±13.64)μm,(54.77±27.55)MPa and(1.63±0.30)GPa,respectively.The nanospike surface-modified bionic porous titanium implants had favorable pore morphology andsize,mechanical properties and osteointegration performance through technology optimization,and showed significant clinicalapplication prospect.展开更多
MC3T3-E1 osteoblasts were cultured on H2O2- modified and unmodified carbon/carbon (H-C/C and C/C) composites for one week in order to evaluate differences in cell adhesion, spreading, and proliferation. The results ...MC3T3-E1 osteoblasts were cultured on H2O2- modified and unmodified carbon/carbon (H-C/C and C/C) composites for one week in order to evaluate differences in cell adhesion, spreading, and proliferation. The results indicated a certain degree of enhancement in the cell adhesion capability of osteoblasts cultured on H-C/C samples. Cellu- lar morphologies after cell adhesion were observed via scan- ning electron microscopy (SEM), which showed that the cells adhered more closely and spread more widely on the H-C/C sample surface. However, no cell appeared in several mul- tiple and continuous types of minor pores on both the C/C and H-C/C surfaces. In addition, two unique situations were observed on the H-C/C samples: an outline change of the osteoblasts was observed when the cells spread across some minor pores, and the cells entered and adhered well in some larger pores.展开更多
Porous materials such as metal-organic frameworks(MOFs)with high theoretical volumetric gas uptake capacity are promising materials for gas storage and separation,but the structuring for practical applications is chal...Porous materials such as metal-organic frameworks(MOFs)with high theoretical volumetric gas uptake capacity are promising materials for gas storage and separation,but the structuring for practical applications is challenging.Herein,we report a general and feasible strategy to combine electrospinning with a phase conversion method to decorate polyacrylonitrile nanofibers(PAN NFs)with CuMOF(HKUST-1).The strategy is based on the combination of surface pretreatment of the NFs with Cu(OH)_(2) and a subsequent phase conversion into HKUST-1 crystals(PCHKUST-1).A significant higher loading of HKUST-1 in the PAN NF matrix was achieved by the phase conversion method compared with direct electrospinning of MOF slurries or insitu growth of MOF crystals on NFs.As a result,the hierarchical structured PC(phase conversion)-HKUST-1 NFs revealed the highest gravimetric storage capacity of 86 cm^(3) g^(-1)(STP)at 3500 kPa and 298 K for methane(CH_(4)),which is higher than other HKUST-1 NFs reported previously.The improved CH_(4) uptake can be explained by the high loading of HKUST-1 due to the high availability of Cu-ions localized on the surface of the NFs during the phase conversion process,resulting in high surface area and excellent gas access of the phase converted HKUST-1.Thus,the developed strategy of structuring MOFs could be of interest for the fabrication of tailor-made MOF NF architectures for other energy and environmental applications.展开更多
基金Projects(51290295,51305464) supported by the National Natural Science Foundation of ChinaProject(2016JJ6156) supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(2016JC2064) supported by the Key Research and Development Program of Hunan Province,ChinaProject(20130162120094) supported by the Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘This work aimed to prepare the nanospike surface-modified bionic porous titanium implants that feature favorableosteointegration performance and anti-bacterial functions.The implant was prepared using freeze casting,and nanospikesurface-modification of the implant was performed using thermal oxidation.The pore morphology and size,mechanical properties,and osteogenic performance of the implants were analyzed and discussed.The results showed that when the volume ratio of titaniumpowder in slurry was set to be10%,the porosity,pore diameter,compressive strength,and elastic modulus of the porous sampleswere(58.32±1.08)%,(126.17±18.64)μm,(58.51±20.38)MPa and(1.70±0.52)GPa,respectively.When the porous sample wassintered at a temperature of1200°C for1h,these values were(58.24±1.50)%,(124.16±13.64)μm,(54.77±27.55)MPa and(1.63±0.30)GPa,respectively.The nanospike surface-modified bionic porous titanium implants had favorable pore morphology andsize,mechanical properties and osteointegration performance through technology optimization,and showed significant clinicalapplication prospect.
基金supported by the National Natural Science Foundation of China(51472203 and 51521061)the Natural Science Basic Research Plan in Shaanxi Province of China(2014JM6233)"111" project of china(B08040)
文摘MC3T3-E1 osteoblasts were cultured on H2O2- modified and unmodified carbon/carbon (H-C/C and C/C) composites for one week in order to evaluate differences in cell adhesion, spreading, and proliferation. The results indicated a certain degree of enhancement in the cell adhesion capability of osteoblasts cultured on H-C/C samples. Cellu- lar morphologies after cell adhesion were observed via scan- ning electron microscopy (SEM), which showed that the cells adhered more closely and spread more widely on the H-C/C sample surface. However, no cell appeared in several mul- tiple and continuous types of minor pores on both the C/C and H-C/C surfaces. In addition, two unique situations were observed on the H-C/C samples: an outline change of the osteoblasts was observed when the cells spread across some minor pores, and the cells entered and adhered well in some larger pores.
基金supported by the Grande Solution Project“HiGradeGas”(48279)Innovation Fund Denmark,exploring NFs-based adsorbents for biogas upgrading and storage+1 种基金the Danish Research Council to provide funding to support fundamental research on electrospinning(8022-00237B)for investigating NFs structures for enzyme immobilization(6111-00232B)。
文摘Porous materials such as metal-organic frameworks(MOFs)with high theoretical volumetric gas uptake capacity are promising materials for gas storage and separation,but the structuring for practical applications is challenging.Herein,we report a general and feasible strategy to combine electrospinning with a phase conversion method to decorate polyacrylonitrile nanofibers(PAN NFs)with CuMOF(HKUST-1).The strategy is based on the combination of surface pretreatment of the NFs with Cu(OH)_(2) and a subsequent phase conversion into HKUST-1 crystals(PCHKUST-1).A significant higher loading of HKUST-1 in the PAN NF matrix was achieved by the phase conversion method compared with direct electrospinning of MOF slurries or insitu growth of MOF crystals on NFs.As a result,the hierarchical structured PC(phase conversion)-HKUST-1 NFs revealed the highest gravimetric storage capacity of 86 cm^(3) g^(-1)(STP)at 3500 kPa and 298 K for methane(CH_(4)),which is higher than other HKUST-1 NFs reported previously.The improved CH_(4) uptake can be explained by the high loading of HKUST-1 due to the high availability of Cu-ions localized on the surface of the NFs during the phase conversion process,resulting in high surface area and excellent gas access of the phase converted HKUST-1.Thus,the developed strategy of structuring MOFs could be of interest for the fabrication of tailor-made MOF NF architectures for other energy and environmental applications.