Nanocomposite fibers have attracted intensive attentions owing to their promising applications in various fields. However, the fabrication of nanocomposite fibers with super toughness and strong strength under mild co...Nanocomposite fibers have attracted intensive attentions owing to their promising applications in various fields. However, the fabrication of nanocomposite fibers with super toughness and strong strength under mild conditions remains a great challenge. Here we present a facile flow-induced assembly strategy for the development of super-tough and strong nanocomposite fibers with highly ordered carbon nanotubes (CNTs), which can be induced by directional and fast flow on a grooved hydrogel surface. The prepared nanocomposite fibers show excellent mechanical properties, with a tensile strength up to 643±27 MPa and toughness as high as 77.3±3.4 MJ m^-3 at ultimate strain of 14.8±1.5%. This versatile and efficient flow-induced alignment strategy represents a promising direction for the development of high-performance nanocomposites for practical applications.展开更多
The growth and ordering of C60 molecules on the WO2/W(110) surface have been studied by low-temperature scanning tunnelling microscopy and spectroscopy (STM and STS), low-energy electron diffraction (LEED), and ...The growth and ordering of C60 molecules on the WO2/W(110) surface have been studied by low-temperature scanning tunnelling microscopy and spectroscopy (STM and STS), low-energy electron diffraction (LEED), and density functional theory (DFT) calculations. The results indicate the growth of a well-ordered C60 layer on the WO2/W(110) surface in which the molecules form a close-packed hexagonal structure with a unit cell parameter equal to 0.95 nm. The nucleation of the C60 layer starts at the substrate's inner step edges. Low-temperature STM of C60 molecules performed at 78 K demonstrates well-resolved molecular orbitals within individual molecules. In the C60 monolayer on the WO2/W(110) surface, the molecules are aligned in one direction due to intermolecular interaction, as shown by the ordered molecular orbitals of individual C60. STS data obtained from the C60 monolayer on the WO2/W(110) surface are in good agreement with DFT calculations.展开更多
基金supported by the National Key R&D Program of China(2017YFA0207800)the National Natural Science Foundation of China(21574004)+4 种基金the National Natural Science Funds for Distinguished Young Scholar(21725401)the 111 project(B14009)the Fundamental Research Funds for the Central Universitiesthe National “Young Thousand Talents Program”the China Postdoctoral Science Foundation(2017M620012)
文摘Nanocomposite fibers have attracted intensive attentions owing to their promising applications in various fields. However, the fabrication of nanocomposite fibers with super toughness and strong strength under mild conditions remains a great challenge. Here we present a facile flow-induced assembly strategy for the development of super-tough and strong nanocomposite fibers with highly ordered carbon nanotubes (CNTs), which can be induced by directional and fast flow on a grooved hydrogel surface. The prepared nanocomposite fibers show excellent mechanical properties, with a tensile strength up to 643±27 MPa and toughness as high as 77.3±3.4 MJ m^-3 at ultimate strain of 14.8±1.5%. This versatile and efficient flow-induced alignment strategy represents a promising direction for the development of high-performance nanocomposites for practical applications.
文摘The growth and ordering of C60 molecules on the WO2/W(110) surface have been studied by low-temperature scanning tunnelling microscopy and spectroscopy (STM and STS), low-energy electron diffraction (LEED), and density functional theory (DFT) calculations. The results indicate the growth of a well-ordered C60 layer on the WO2/W(110) surface in which the molecules form a close-packed hexagonal structure with a unit cell parameter equal to 0.95 nm. The nucleation of the C60 layer starts at the substrate's inner step edges. Low-temperature STM of C60 molecules performed at 78 K demonstrates well-resolved molecular orbitals within individual molecules. In the C60 monolayer on the WO2/W(110) surface, the molecules are aligned in one direction due to intermolecular interaction, as shown by the ordered molecular orbitals of individual C60. STS data obtained from the C60 monolayer on the WO2/W(110) surface are in good agreement with DFT calculations.