Mg/Al layered double hydroxide(LDH) was treated with stearic acid by a wet method. The modified double hydroxide showed good dispersion and floatation property with their layer structure being remained almost unchanged.
Polypiperazine-amide membranes were modified with poly(ethyleneimine)(PEI) by self-assembled method,through which PEI molecules were fixed on the membrane surface by ionic interaction. In the experiments,the PEI conce...Polypiperazine-amide membranes were modified with poly(ethyleneimine)(PEI) by self-assembled method,through which PEI molecules were fixed on the membrane surface by ionic interaction. In the experiments,the PEI concentration ranged from 50 to 2000 mg·L-1while the depositing time was fixed at 20 min. The results showed that low PEI concentration resulted in a slight increase of pure water flux, which was attributed to the enhanced membrane surface hydrophilicity. The PEI adsorption on membrane surface had less effect on the rejections to neutral PEG and sucrose, but improved the rejections to divalent cationic ions and methylene blue as the result of reversion of the membrane surface charge from negative to positive according to the XPS analysis and zeta potential measurements. The membrane modified at PEI = 1500 mg·L-1exhibited high rejection to methylene blue(MB) and is potential to be applied in the treatment of effluents containing positively charged dyes.展开更多
In this study, MWNT and alumina nanopowder were used as a ruthenium catalyst support for the conversion of carbon monoxide to methane. Metal foam structures were employed to support such catalytic systems, offering in...In this study, MWNT and alumina nanopowder were used as a ruthenium catalyst support for the conversion of carbon monoxide to methane. Metal foam structures were employed to support such catalytic systems, offering interesting possibilities for commercial applications due to low-pressure drop; excellent flow characteristic and heat transfer properties. Prior to the ruthenium impregnation, the MWNT surface was initially modified by means of metal cation activation and surface adsorption of anionic surfactant. The decoration processes using both surface modifications promoted the deposition of ruthenium with a mean 2 nm diameter. The use of nickel as a nucleating center enhanced the Ru nanoparticle density on the CNT surface compared to the Ru/CNT catalyst prepared by excess solution impregnation. As a reducing agent, ethylene glycol completely converted Ru2+ to Ru0as confirmed by an EDS/TEM analysis. Among the prepared catalysts, Ru/AI203-CNTs prepared by Ni2+ activation showed the best performance for the hydrogenation reaction. This is interpreted in terms of the higher ruthenium nanoparticle exposure on the nanostructured catalyst, as a result of the better MWNT dispersion in the MWNT/Al2O3 mixture.展开更多
文摘Mg/Al layered double hydroxide(LDH) was treated with stearic acid by a wet method. The modified double hydroxide showed good dispersion and floatation property with their layer structure being remained almost unchanged.
基金Support by the National High Technology Research and Development Program of China(863 Program)(2012AA03A608)the Open Foundation of Zhejiang Provincial Top Key Academic Discipline of Applied Chemistry and Eco-Dyeing&Finishing Engineering(YR2012012)
文摘Polypiperazine-amide membranes were modified with poly(ethyleneimine)(PEI) by self-assembled method,through which PEI molecules were fixed on the membrane surface by ionic interaction. In the experiments,the PEI concentration ranged from 50 to 2000 mg·L-1while the depositing time was fixed at 20 min. The results showed that low PEI concentration resulted in a slight increase of pure water flux, which was attributed to the enhanced membrane surface hydrophilicity. The PEI adsorption on membrane surface had less effect on the rejections to neutral PEG and sucrose, but improved the rejections to divalent cationic ions and methylene blue as the result of reversion of the membrane surface charge from negative to positive according to the XPS analysis and zeta potential measurements. The membrane modified at PEI = 1500 mg·L-1exhibited high rejection to methylene blue(MB) and is potential to be applied in the treatment of effluents containing positively charged dyes.
文摘In this study, MWNT and alumina nanopowder were used as a ruthenium catalyst support for the conversion of carbon monoxide to methane. Metal foam structures were employed to support such catalytic systems, offering interesting possibilities for commercial applications due to low-pressure drop; excellent flow characteristic and heat transfer properties. Prior to the ruthenium impregnation, the MWNT surface was initially modified by means of metal cation activation and surface adsorption of anionic surfactant. The decoration processes using both surface modifications promoted the deposition of ruthenium with a mean 2 nm diameter. The use of nickel as a nucleating center enhanced the Ru nanoparticle density on the CNT surface compared to the Ru/CNT catalyst prepared by excess solution impregnation. As a reducing agent, ethylene glycol completely converted Ru2+ to Ru0as confirmed by an EDS/TEM analysis. Among the prepared catalysts, Ru/AI203-CNTs prepared by Ni2+ activation showed the best performance for the hydrogenation reaction. This is interpreted in terms of the higher ruthenium nanoparticle exposure on the nanostructured catalyst, as a result of the better MWNT dispersion in the MWNT/Al2O3 mixture.