Free surface vortex control is vital in a pump sump system because the air absorbed by free surface vortex induc- es noise, vibration, and cavitation corrosion on the pumping system. In this study, the change of free ...Free surface vortex control is vital in a pump sump system because the air absorbed by free surface vortex induc- es noise, vibration, and cavitation corrosion on the pumping system. In this study, the change of free surface vor- tex and air absorption in a pump intake has been investigated by the Volume of Fraction (VOF) method with steady multiphase flow model in order to represent the behavior of the free surface vortex exactly. The homoge- neous free surface model is used to apply interactions of air and water. The results show that air intake by the free surface vortex motion can be visualized using the iso-surface of air volume fraction. The vortices make an air column from the free surface to the pump intake. Also, it was found that the flee surface vortex can be controlled by installing curtain walls.展开更多
Physical processes associated with onset of the 1998 Asian summer monsoon were examined in detail using multi-source datasets. We demonstrated that strong ocean-atmosphere-land interaction in the northern Indian Ocean...Physical processes associated with onset of the 1998 Asian summer monsoon were examined in detail using multi-source datasets. We demonstrated that strong ocean-atmosphere-land interaction in the northern Indian Ocean and tropical Asian area during spring is a fundamental factor that induces the genesis and development of a monsoon onset vortex over the Bay of Bengal (BOB), with the vortex in turn triggering onset of the Asian summer monsoon. In spring, strong surface sensible heat- ing over India and the Indochina Peninsula is transferred to the atmosphere, forming prominent in situ cyclonic circulation, with anticyclonic circulations over the Arabian Sea and northern BOB where the ocean receives abundant solar radiation. The corresponding surface winds along the North Indian Ocean coastal areas cause the ocean to produce the in situ offshore cur- rents and upwelling, resulting in sea surface temperature (SST) cooling. With precipitation on the Indochina Peninsula in- creasing from late April to early May, the offshore current disappears in the eastern BOB or develops into an onshore current, leading to SST increasing. A southwest-northeast oriented spring BOB warm pool with SST 〉31℃forms in a band from the southeastern Arabian Sea to the eastern BOB. In early May, the Somali cross-equatorial flow forms due to the meridional SST gradient between the two hemispheres, and surface sensible heat over the African land surface. The Somali flow overlaps in phase with the anticyclone over the northern Arabian Sea in the course of its inertial fluctuation along the equator. The con- vergent cold northerlies on the eastern side of the anticyclone cause the westerly in the inertial trough to increase rapidly, so that enhanced sensible heat is released from the sea surface into the atmosphere. The cyclonic vorticity forced by such sensible heating is superimposed on the inertial trough, leading to its further increase in vorticity strength. Since atmospheric inertial motion is destroyed, the flow deviates from the inertial track in an intensified cyclonic curvature, and then turns northward to- ward the warm pool in the northern BOB. It therefore converges with the easterly flow on the south side of the anticyclone over the northern BOB, forming a cyclonic circulation center east of Sri Lanka. Co-located with the cyclonic circulation is a generation of atmospheric potential energy, due to lower tropospheric heating by the warm ocean. Eventually the BOB mon- soon onset vortex (MOV) is generated east of Sri Lanka. As the MOV migrates northward to the warm pool it develops quickly such that the zonal oriented subtropical high is split over the eastern BOB. Thus, the tropical southwesterly on the southern and eastern sides of the MOV merges into the subtropical westerly in the north, leading to active convection over the eastern BOB and western Indochina Peninsula and onset of the Asian summer monsoon.展开更多
Surface vortex behavior in front of the tunnel intake was investigated in this paper.The critical submergence of vortex was discussed based on the concept of 'critical spherical sink surface'(CSSS).The vortex ...Surface vortex behavior in front of the tunnel intake was investigated in this paper.The critical submergence of vortex was discussed based on the concept of 'critical spherical sink surface'(CSSS).The vortex formation and evolution at the tunnel intake were analyzed based on the theory of CSSS considering the effect of circulation.A theory was proposed to explain the surface vortex.The theoretical development was verified by the physical model experiments of Xiluodu hydropower station.The radial velocity and vortex circulation were considered as the main factors that influence the formation and evolution of surface vortex.Finally,an anti-vortex intake configuration was proposed to weaken the air-core vortex in front of the tunnel intakes of the hydraulic structures.展开更多
基金supported by"BK21 Plus project"and"Human Resources Program in Energy Technology"(KETEP)granted financial resource from the Ministry of Trade,Industry&Energy,Republic of Korea.(No.20164010200940)
文摘Free surface vortex control is vital in a pump sump system because the air absorbed by free surface vortex induc- es noise, vibration, and cavitation corrosion on the pumping system. In this study, the change of free surface vor- tex and air absorption in a pump intake has been investigated by the Volume of Fraction (VOF) method with steady multiphase flow model in order to represent the behavior of the free surface vortex exactly. The homoge- neous free surface model is used to apply interactions of air and water. The results show that air intake by the free surface vortex motion can be visualized using the iso-surface of air volume fraction. The vortices make an air column from the free surface to the pump intake. Also, it was found that the flee surface vortex can be controlled by installing curtain walls.
基金supported jointly by National Basic Research Program of China (Grant No. 2006CB403600)the Chinese Academy of Sciences (Grant No. KZCX2-YW-Q11-01)National Natural Science Foundation of China (Grant Nos. 40875034, 40925015, 40821092, 40975052, and 40810059005)
文摘Physical processes associated with onset of the 1998 Asian summer monsoon were examined in detail using multi-source datasets. We demonstrated that strong ocean-atmosphere-land interaction in the northern Indian Ocean and tropical Asian area during spring is a fundamental factor that induces the genesis and development of a monsoon onset vortex over the Bay of Bengal (BOB), with the vortex in turn triggering onset of the Asian summer monsoon. In spring, strong surface sensible heat- ing over India and the Indochina Peninsula is transferred to the atmosphere, forming prominent in situ cyclonic circulation, with anticyclonic circulations over the Arabian Sea and northern BOB where the ocean receives abundant solar radiation. The corresponding surface winds along the North Indian Ocean coastal areas cause the ocean to produce the in situ offshore cur- rents and upwelling, resulting in sea surface temperature (SST) cooling. With precipitation on the Indochina Peninsula in- creasing from late April to early May, the offshore current disappears in the eastern BOB or develops into an onshore current, leading to SST increasing. A southwest-northeast oriented spring BOB warm pool with SST 〉31℃forms in a band from the southeastern Arabian Sea to the eastern BOB. In early May, the Somali cross-equatorial flow forms due to the meridional SST gradient between the two hemispheres, and surface sensible heat over the African land surface. The Somali flow overlaps in phase with the anticyclone over the northern Arabian Sea in the course of its inertial fluctuation along the equator. The con- vergent cold northerlies on the eastern side of the anticyclone cause the westerly in the inertial trough to increase rapidly, so that enhanced sensible heat is released from the sea surface into the atmosphere. The cyclonic vorticity forced by such sensible heating is superimposed on the inertial trough, leading to its further increase in vorticity strength. Since atmospheric inertial motion is destroyed, the flow deviates from the inertial track in an intensified cyclonic curvature, and then turns northward to- ward the warm pool in the northern BOB. It therefore converges with the easterly flow on the south side of the anticyclone over the northern BOB, forming a cyclonic circulation center east of Sri Lanka. Co-located with the cyclonic circulation is a generation of atmospheric potential energy, due to lower tropospheric heating by the warm ocean. Eventually the BOB mon- soon onset vortex (MOV) is generated east of Sri Lanka. As the MOV migrates northward to the warm pool it develops quickly such that the zonal oriented subtropical high is split over the eastern BOB. Thus, the tropical southwesterly on the southern and eastern sides of the MOV merges into the subtropical westerly in the north, leading to active convection over the eastern BOB and western Indochina Peninsula and onset of the Asian summer monsoon.
基金supported by Tsinghua University Initiative Scientific Research Program (Grant No. 2009THZ07060)the State Key Laboratory of Hydroscience and Engineering of Tsinghua University (Grant No. 2010-TC-2,2009-TC-2)
文摘Surface vortex behavior in front of the tunnel intake was investigated in this paper.The critical submergence of vortex was discussed based on the concept of 'critical spherical sink surface'(CSSS).The vortex formation and evolution at the tunnel intake were analyzed based on the theory of CSSS considering the effect of circulation.A theory was proposed to explain the surface vortex.The theoretical development was verified by the physical model experiments of Xiluodu hydropower station.The radial velocity and vortex circulation were considered as the main factors that influence the formation and evolution of surface vortex.Finally,an anti-vortex intake configuration was proposed to weaken the air-core vortex in front of the tunnel intakes of the hydraulic structures.