Titanium with gradient nano-to-micron scale grains from surface to matrix was fabricated by surface mechanical grinding treatment(SMGT) at room temperature.The SMGT-treated titanium shows higher strength than that of ...Titanium with gradient nano-to-micron scale grains from surface to matrix was fabricated by surface mechanical grinding treatment(SMGT) at room temperature.The SMGT-treated titanium shows higher strength than that of as-received one,but moderate ductility between those of ultra-fine grained(UFG) and coarse-grained titanium.Tensile stress-strain curves of SMGT-treated titanium show double strain hardening regimes.The strain hardening rate(dσ/dε) decreases with increasing strain in tensile deformation.The high strain hardening rate at initial yielding is attributed to nano-to-micron-grained surface layer.The low strain hardening rate at large plastic strain regime primarily results from coarse-grained matrix.The SMGT-treated titanium shows a ductile fracture mode with a large number of dimples.The small size of dimples in the treated surface layer is due to the combination of the high strength and strain hardening exponent.The difference between dimple size in nano-to-micron-grained surface layer and coarse-grained matrix is discussed in terms of plastic zone size at the tip of crack in the SMGT-treated titanium.展开更多
有限元模拟是研究金属材料塑性变形制定加工工艺参数、预测加工后表面残余应力分布以及塑性变形层厚度的有利工具。利用有限元数值模拟软件对表面机械多重碾磨(Machinery Multi-Grinding of Surface,MMGS)过程进行了研究,目的是为了确...有限元模拟是研究金属材料塑性变形制定加工工艺参数、预测加工后表面残余应力分布以及塑性变形层厚度的有利工具。利用有限元数值模拟软件对表面机械多重碾磨(Machinery Multi-Grinding of Surface,MMGS)过程进行了研究,目的是为了确定合理的MMGS加工工艺参数。结果表明:碾磨头下压量大小、碾磨道次和碾磨头转速是影响碾磨后材料表面有效应变大小和塑形应变层深度的主要加工参数,碾磨加工过程中碾磨头转速不超过1 800 rpm、平移进给速度为60~120 mm/min、多道次的反复碾磨方式更加有利于获得较高的有效应变大小和较大的塑形变形层深度,研究结果可以为MMGS的实验研究提供理论指导。展开更多
基金Project(2014CB644003)supported by the National Basic Research Program of ChinaProject(51321003)supported by the National Natural Science Foundation of ChinaProject(B06025)supported by"111"Project of China
文摘Titanium with gradient nano-to-micron scale grains from surface to matrix was fabricated by surface mechanical grinding treatment(SMGT) at room temperature.The SMGT-treated titanium shows higher strength than that of as-received one,but moderate ductility between those of ultra-fine grained(UFG) and coarse-grained titanium.Tensile stress-strain curves of SMGT-treated titanium show double strain hardening regimes.The strain hardening rate(dσ/dε) decreases with increasing strain in tensile deformation.The high strain hardening rate at initial yielding is attributed to nano-to-micron-grained surface layer.The low strain hardening rate at large plastic strain regime primarily results from coarse-grained matrix.The SMGT-treated titanium shows a ductile fracture mode with a large number of dimples.The small size of dimples in the treated surface layer is due to the combination of the high strength and strain hardening exponent.The difference between dimple size in nano-to-micron-grained surface layer and coarse-grained matrix is discussed in terms of plastic zone size at the tip of crack in the SMGT-treated titanium.