Recent SST and atmospheric circulation anomaly data suggest that the 2015/16 El Nino event is quickly decaying. Some researchers have predicted a forthcoming La Nina event in late summer or early fall 2016. From the p...Recent SST and atmospheric circulation anomaly data suggest that the 2015/16 El Nino event is quickly decaying. Some researchers have predicted a forthcoming La Nina event in late summer or early fall 2016. From the perspective of the modulation of tropical SST by solar activity, the authors studied the evolution of the 2015/16 El Nino event, which occurred right after the 2014 solar peak year. Based on statistical and composite analysis, a significant positive correlation was found between sunspot number index and El Ni^o Modoki index, with a lag of two years. A clear evolution of El Nino Modoki events was found within 1-3 years following each solar peak year during the past 126 years, suggesting that anomalously strong solar activity during solar peak periods favors the triggering of an El Nino Modoki event. The patterns of seasonal mean SST and wind anomalies since 2014 are more like a mixture of two types of El Nino (i.e. eastern Pacific El Nino and El Nino Modoki), which is similar to the pattern modulated by solar activity during the years following a solar peak. Therefore, the El Nino Modoki component in the 2015/16 El Nino event may be a consequence of solar activity, which probably will not decay as quickly as the eastern Pacific El Nino component. The positive SST anomaly will probably sustain in the central equatorial Pacific (around the dateline) and the northeastern Pacific along the coast of North America, with a low-intensity level, during the second half of 2016.展开更多
To study the mechanism of unsteady heat-moisture transfer of wet surrounding rock in deep mining, a series of experiments with different initial and boundary conditions were carried out. Test results show that rock te...To study the mechanism of unsteady heat-moisture transfer of wet surrounding rock in deep mining, a series of experiments with different initial and boundary conditions were carried out. Test results show that rock temperature decreases quickly at the initial stage, and reduces slowly to be a constant value finally for transient heat-moisture transfer. The quasi-steady surface temperature of wet airway is lower than that of dry airway due to the moisture transfer. The diffusion radius is less than the cooling radius owing to the large diffusion resistance. The outlet airflow enthalpy of wet airway is much larger than that of dry airway. Latent heat caused by the moisture transfer plays a significant role in a deep thermal environment. For periodic heat-moisture transfer, temperature, humidity and enthalpy of outlet airflow and rock temperature also change periodically. The wave amplitude of rock temperature decreases gradually with increasing distance away from the airway surface, and the wave phase of rock temperature is also behind that of airflow. Moreover, direction of the heat-moisture transfer between airway and airflow is bidirectional, which is different from results of transient transfer.展开更多
The temporal and spatial variations of surface latent heat flux(SLHF)and diagnostic air temperature at 2m before and after the M_S5.7 earthquake occurring on November 26,2005 in the area between Ruichang City and Jiuj...The temporal and spatial variations of surface latent heat flux(SLHF)and diagnostic air temperature at 2m before and after the M_S5.7 earthquake occurring on November 26,2005 in the area between Ruichang City and Jiujiang City,Jiangxi Province are summarized in this paper.It is found that before the earthquake significant SLHF anomalies and air temperature anomalies occurred in the epicentral area and its vicinity.The air temperature anomalies appeared from the 2nd to the 13th of November,2005 and were concentrated at the epicentral area and in its southern part.Then two days later,that is,from the 4th to the 15th of November 2005,significant SLHF anomalies occurred in the epicentral area and to its northern area where many lakes are distributed along the active faults.During the anomalous period,the SLHF and air temperature at 2m exceeded the sum of average daily value over 26 years and 1.5 times of its mean square deviation.Both anomalies had maintained for 12 days with a peculiar distribution related to the tectonic active zone.It is considered that both of air temperature anomalies and SLHF anomalies are correlated to the movement of thermal flux from underground prior to earthquake.SLHF anomalies occurred over wide regions covered with abundant water,whereas air temperature anomalies occurred over land.展开更多
In order to address the bubble formation and movement in air-water two-phase flow,single bubble rising in stagnant water is experimentally studied by digital image processing.Bubbles are released individually from the...In order to address the bubble formation and movement in air-water two-phase flow,single bubble rising in stagnant water is experimentally studied by digital image processing.Bubbles are released individually from the submerged orifices with different diameters(1.81 mm,2.07 mm,2.98 mm,3.92 mm)at different detachment frequency.Images are recorded by a high-speed video camera and processed by digital image processing technique. The factors impacting the formed volume of bubble are discussed.The experimental results showed that a threshold of gas flow rate(400 mm 3 ·s- 1)divides the bubble formation into two regimes:the constant volume regime and the growing volume regime.Especially for the growing volume regime,the surface tension is taken into account.The bubble volume is consisted of two parts:the surface tension impacting part and the gas volume flow rate impacting part.An improved correlation for bubble volume prediction is developed for the two regimes and better coincidence with the experiment data than the previous models is obtained.展开更多
In this study,the effects of surfactants on the hydrodynamic characteristics of bubbles in shear-thinning fluids at low Reynolds number(Re<50)are investigated.The bubble terminal velocity and drag coefficient of bu...In this study,the effects of surfactants on the hydrodynamic characteristics of bubbles in shear-thinning fluids at low Reynolds number(Re<50)are investigated.The bubble terminal velocity and drag coefficient of bubble in clean and contaminated carboxymethylcellulose(CMC)solutions are obtained using a high-speed camera for examining differences.The results show that the existence of surfactant could reduce the terminal velocity of bubble at small volume(0.25wt%CMC:<100 mm3;0.50wt%CMC:<110 mm3),attributed to stiffening the bubble interface.However,this negative effect decreases and finally disappears with increasing bubble volume.The drag coefficient curves of the bubble in contaminated CMC solution exhibit behavior similar to that exhibited by a solid sphere at Re<10,indicating that internal circulation flow is absent at the bubble interface as compared to that in clean CMC solution.However,for 10<Re<40,a transition of drag curve from 24/Re to 16/Re in contaminated CMC solution is observed,which is easy at low SDS concentrations and high CMC concentrations.展开更多
The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved ...The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved computational fluid dynamics (CFD) simulations. To obtain this information, an efficient bubble profile reconstruction method based on an improved agglomerative hierarchical clustering (AHC) algorithm is proposed in this paper. The reconstruction method is featured by the implementations of a binary space division preprocessing, which aims to reduce the computational complexity, an adaptive linkage criterion, which guarantees the applicability of the AHC algorithm when dealing with datasets involving either non-uniform or distorted grids, and a stepwise execution strategy, which enables the separation of attached bubbles. To illustrate and verify this method, it was applied to dealing with 3 datasets, 2 of them with pre-specified spherical bubbles and the other obtained by a surface-resolved CFD simulation. Application results indicate that the proposed method is effective even when the data include some non-uniform and distortion.展开更多
Hurricane fighting devices are recommended. The devices belong to the sphere of artificial weather conditions changes over the Earth surface. The purpose of the paper is the development of the original design of devic...Hurricane fighting devices are recommended. The devices belong to the sphere of artificial weather conditions changes over the Earth surface. The purpose of the paper is the development of the original design of devices for hurricane fighting. The decreasing of hurricane energy takes place under the reaction of directed air current against the hurricane air current mass. The air current is created by propellers, located in cylindrical frames with nozzles at a current exit. The devices function due to horizontal hurricanes air current. The essential factor lies in absence of influence on ecology. The devices are of simple constructions, it results in simplification of their production technology and lower cost,展开更多
A model for liquid-gas flow (MLGF), considering the flee movement of liquid surface, was built to simulate the wastewater velocity field and gas distribution in a full-scale Caroussel oxidation ditch with surface ae...A model for liquid-gas flow (MLGF), considering the flee movement of liquid surface, was built to simulate the wastewater velocity field and gas distribution in a full-scale Caroussel oxidation ditch with surface aeration. It was calibrated and validated by field measurement data, and the calibrated parameters and sections were selected based on both model analysis and numerical computation. The simulated velocities of MLGF were compared to that of a model for wastewater-sludge flow (MWSF). The results show that the free liquid surface considered in MLGF improves the simulated velocity results of upper layer and surface. Moreover, distribution of gas volume fraction (GVF) simulated by MLGF was compared to dissolved oxygen (DO) measured in the oxidation ditch. It is shown that DO distribution is affected by many factors besides GVF distribution.展开更多
Macro and micromixing time represent two extreme mixing time scales,which governs the whole hydrodynamics characteristics of the surface aeration systems.With the help of experimental and numerical analysis,simulation...Macro and micromixing time represent two extreme mixing time scales,which governs the whole hydrodynamics characteristics of the surface aeration systems.With the help of experimental and numerical analysis,simulation equation governing those times scale has been presented in the present work.展开更多
A global atmospheric general circulation model and an asynchronously coupled global atmosphere-biome model are used to simulate vegetation feedback at the mid-Pliocene approximately 3.3 to 3.0 million years ago.For th...A global atmospheric general circulation model and an asynchronously coupled global atmosphere-biome model are used to simulate vegetation feedback at the mid-Pliocene approximately 3.3 to 3.0 million years ago.For that period,the simulated vegetation differed from present conditions at 62% of the global ice-free land surface.Vegetation feedback had little overall impact on the global climate of the mid-Pliocene.At the regional scale,however,the interactive vegetation led to statistically significant increases in annual temperature over Greenland,the high latitudes of North America,the mid-high latitudes of eastern Eurasia,and westem Tibet,and reductions in most of the land areas at low latitudes,owing to vegetation-induced changes in surface albedo.展开更多
The future climate dynamical downscaling method is that output of general circulation models( GCMs) is employed to provide initial conditions,lateral boundary conditions,sea surface temperatures,and initial land surfa...The future climate dynamical downscaling method is that output of general circulation models( GCMs) is employed to provide initial conditions,lateral boundary conditions,sea surface temperatures,and initial land surface conditions to regional climate models( RCMs). There are two methods of downscaling: offline coupling and online coupling. The two kinds of coupling methods are described in detail by coupling the Weather Research and Forecasting model( WRF) with the Institute of Atmospheric Physics of Chinese Academy of Sciences Atmospheric General Circulation Model Version 4. 0( IAP AGCM4. 0) in the study. And the extreme precipitation event over Beijing on July 212012 is simulated by using the two coupling methods. Results show that online coupling method is of great value in improving the model simulation. Furthermore,the data exchange frequency of online coupling has some effect on simulation result.展开更多
To improve the performance of the single layer flow insulation system utilizing open-cellular porous plate, the multilayer porous gas enthalpy-radiation converter is proposed and investigated experimentally and theore...To improve the performance of the single layer flow insulation system utilizing open-cellular porous plate, the multilayer porous gas enthalpy-radiation converter is proposed and investigated experimentally and theoretically. Two open-cellular porous materials with different porosity pore per inch and surface reflectivity have been examined. Each porous plate has the same thickness of a half of the single layer one. Both porous materials are not combined continuously but divided by free space. For the prediction model, two energy equations of the fluid and solid phases are employed, in which the convective heat transfer between both phases is described based on the empirical volumetric heat transfer coefficient. In addition, the radiative transfer equations are resolved by Pj approximation. When an equivalent blackbody radiation temperature of the radiation coming from the upstream region exceeds inlet gas temperature, use of a high reflective porous plate on the upstream side and a low reflective porous plate on the downstream side is quite effective to increase gas temperature drop across the converter. the multilayer porous converter should be made of pure scattering and porous layer, respectively. In order to obtain maximum gas temperature drop in that case, pure absorbing porous plate as the upstream and downstream展开更多
基金supported by the National Basic Research Program of china(973 Program)[grant number 2012c B957804]the External cooperation Program of BIc,chinese Academy of Sciences[grant number 134111KYSB20150016]
文摘Recent SST and atmospheric circulation anomaly data suggest that the 2015/16 El Nino event is quickly decaying. Some researchers have predicted a forthcoming La Nina event in late summer or early fall 2016. From the perspective of the modulation of tropical SST by solar activity, the authors studied the evolution of the 2015/16 El Nino event, which occurred right after the 2014 solar peak year. Based on statistical and composite analysis, a significant positive correlation was found between sunspot number index and El Ni^o Modoki index, with a lag of two years. A clear evolution of El Nino Modoki events was found within 1-3 years following each solar peak year during the past 126 years, suggesting that anomalously strong solar activity during solar peak periods favors the triggering of an El Nino Modoki event. The patterns of seasonal mean SST and wind anomalies since 2014 are more like a mixture of two types of El Nino (i.e. eastern Pacific El Nino and El Nino Modoki), which is similar to the pattern modulated by solar activity during the years following a solar peak. Therefore, the El Nino Modoki component in the 2015/16 El Nino event may be a consequence of solar activity, which probably will not decay as quickly as the eastern Pacific El Nino component. The positive SST anomaly will probably sustain in the central equatorial Pacific (around the dateline) and the northeastern Pacific along the coast of North America, with a low-intensity level, during the second half of 2016.
基金Foundation item: Project(2012CB026103) supported by the National Basic Research Program of China Project(51204170) supported by the National Natural Science Foundation of China+2 种基金 Project(2011M500974) supported by Postdoctoral Science Foundation of China Project (2011QNA16) supported by Fundamental Research Funds for the Central Universities, China Project(PDll01) supported by Postdoctoral Foundation of State Key Laboratory for Geomechanics and Deep Underground Engineering, China
文摘To study the mechanism of unsteady heat-moisture transfer of wet surrounding rock in deep mining, a series of experiments with different initial and boundary conditions were carried out. Test results show that rock temperature decreases quickly at the initial stage, and reduces slowly to be a constant value finally for transient heat-moisture transfer. The quasi-steady surface temperature of wet airway is lower than that of dry airway due to the moisture transfer. The diffusion radius is less than the cooling radius owing to the large diffusion resistance. The outlet airflow enthalpy of wet airway is much larger than that of dry airway. Latent heat caused by the moisture transfer plays a significant role in a deep thermal environment. For periodic heat-moisture transfer, temperature, humidity and enthalpy of outlet airflow and rock temperature also change periodically. The wave amplitude of rock temperature decreases gradually with increasing distance away from the airway surface, and the wave phase of rock temperature is also behind that of airflow. Moreover, direction of the heat-moisture transfer between airway and airflow is bidirectional, which is different from results of transient transfer.
基金This research was jointly sponsored by the National 11th"Five-Year Plan"of Key Technology R & D Program of Ministry of Science and Technology (Grant No.2006BAC01B030203)the National Natural Science Foundation of Chin (40372131).
文摘The temporal and spatial variations of surface latent heat flux(SLHF)and diagnostic air temperature at 2m before and after the M_S5.7 earthquake occurring on November 26,2005 in the area between Ruichang City and Jiujiang City,Jiangxi Province are summarized in this paper.It is found that before the earthquake significant SLHF anomalies and air temperature anomalies occurred in the epicentral area and its vicinity.The air temperature anomalies appeared from the 2nd to the 13th of November,2005 and were concentrated at the epicentral area and in its southern part.Then two days later,that is,from the 4th to the 15th of November 2005,significant SLHF anomalies occurred in the epicentral area and to its northern area where many lakes are distributed along the active faults.During the anomalous period,the SLHF and air temperature at 2m exceeded the sum of average daily value over 26 years and 1.5 times of its mean square deviation.Both anomalies had maintained for 12 days with a peculiar distribution related to the tectonic active zone.It is considered that both of air temperature anomalies and SLHF anomalies are correlated to the movement of thermal flux from underground prior to earthquake.SLHF anomalies occurred over wide regions covered with abundant water,whereas air temperature anomalies occurred over land.
基金Supported by the National Natural Science Foundation of China(50776063)the Natural Science Foundation of Tianjin(11JCZDJC22500)
文摘In order to address the bubble formation and movement in air-water two-phase flow,single bubble rising in stagnant water is experimentally studied by digital image processing.Bubbles are released individually from the submerged orifices with different diameters(1.81 mm,2.07 mm,2.98 mm,3.92 mm)at different detachment frequency.Images are recorded by a high-speed video camera and processed by digital image processing technique. The factors impacting the formed volume of bubble are discussed.The experimental results showed that a threshold of gas flow rate(400 mm 3 ·s- 1)divides the bubble formation into two regimes:the constant volume regime and the growing volume regime.Especially for the growing volume regime,the surface tension is taken into account.The bubble volume is consisted of two parts:the surface tension impacting part and the gas volume flow rate impacting part.An improved correlation for bubble volume prediction is developed for the two regimes and better coincidence with the experiment data than the previous models is obtained.
基金Project(21406141)supported by the National Natural Science Foundation of ChinaProject(20141078)supported by the National Basic Research Program,ChinaProject(L201733)supported by the Research Foundation of Education Bureau of Liaoning Province,China
文摘In this study,the effects of surfactants on the hydrodynamic characteristics of bubbles in shear-thinning fluids at low Reynolds number(Re<50)are investigated.The bubble terminal velocity and drag coefficient of bubble in clean and contaminated carboxymethylcellulose(CMC)solutions are obtained using a high-speed camera for examining differences.The results show that the existence of surfactant could reduce the terminal velocity of bubble at small volume(0.25wt%CMC:<100 mm3;0.50wt%CMC:<110 mm3),attributed to stiffening the bubble interface.However,this negative effect decreases and finally disappears with increasing bubble volume.The drag coefficient curves of the bubble in contaminated CMC solution exhibit behavior similar to that exhibited by a solid sphere at Re<10,indicating that internal circulation flow is absent at the bubble interface as compared to that in clean CMC solution.However,for 10<Re<40,a transition of drag curve from 24/Re to 16/Re in contaminated CMC solution is observed,which is easy at low SDS concentrations and high CMC concentrations.
基金Projects(51634010,51676211) supported by the National Natural Science Foundation of ChinaProject(2017SK2253) supported by the Key Research and Development Program of Hunan Province,China
文摘The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved computational fluid dynamics (CFD) simulations. To obtain this information, an efficient bubble profile reconstruction method based on an improved agglomerative hierarchical clustering (AHC) algorithm is proposed in this paper. The reconstruction method is featured by the implementations of a binary space division preprocessing, which aims to reduce the computational complexity, an adaptive linkage criterion, which guarantees the applicability of the AHC algorithm when dealing with datasets involving either non-uniform or distorted grids, and a stepwise execution strategy, which enables the separation of attached bubbles. To illustrate and verify this method, it was applied to dealing with 3 datasets, 2 of them with pre-specified spherical bubbles and the other obtained by a surface-resolved CFD simulation. Application results indicate that the proposed method is effective even when the data include some non-uniform and distortion.
文摘Hurricane fighting devices are recommended. The devices belong to the sphere of artificial weather conditions changes over the Earth surface. The purpose of the paper is the development of the original design of devices for hurricane fighting. The decreasing of hurricane energy takes place under the reaction of directed air current against the hurricane air current mass. The air current is created by propellers, located in cylindrical frames with nozzles at a current exit. The devices function due to horizontal hurricanes air current. The essential factor lies in absence of influence on ecology. The devices are of simple constructions, it results in simplification of their production technology and lower cost,
基金Project supported by Visiting Scholar Foundation of Key Laboratory of the Resources Exploitation and Environmental Disaster Control Engineering in Southwest China (Chongqing University),Ministry of Education,China
文摘A model for liquid-gas flow (MLGF), considering the flee movement of liquid surface, was built to simulate the wastewater velocity field and gas distribution in a full-scale Caroussel oxidation ditch with surface aeration. It was calibrated and validated by field measurement data, and the calibrated parameters and sections were selected based on both model analysis and numerical computation. The simulated velocities of MLGF were compared to that of a model for wastewater-sludge flow (MWSF). The results show that the free liquid surface considered in MLGF improves the simulated velocity results of upper layer and surface. Moreover, distribution of gas volume fraction (GVF) simulated by MLGF was compared to dissolved oxygen (DO) measured in the oxidation ditch. It is shown that DO distribution is affected by many factors besides GVF distribution.
基金Supported by the Department of Science and Technology,Government of India (DSTO717)
文摘Macro and micromixing time represent two extreme mixing time scales,which governs the whole hydrodynamics characteristics of the surface aeration systems.With the help of experimental and numerical analysis,simulation equation governing those times scale has been presented in the present work.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(KZCX2-EW-QN202)the National Natural Science Foundation of China(40975050 and41175072)
文摘A global atmospheric general circulation model and an asynchronously coupled global atmosphere-biome model are used to simulate vegetation feedback at the mid-Pliocene approximately 3.3 to 3.0 million years ago.For that period,the simulated vegetation differed from present conditions at 62% of the global ice-free land surface.Vegetation feedback had little overall impact on the global climate of the mid-Pliocene.At the regional scale,however,the interactive vegetation led to statistically significant increases in annual temperature over Greenland,the high latitudes of North America,the mid-high latitudes of eastern Eurasia,and westem Tibet,and reductions in most of the land areas at low latitudes,owing to vegetation-induced changes in surface albedo.
基金Supported by the National Natural Science Foundation of China(No.61602477)China Postdoctoral Science Foundation(No.2016M601158)National Key Research and Development Program of China(No.2016YFB0200804)
文摘The future climate dynamical downscaling method is that output of general circulation models( GCMs) is employed to provide initial conditions,lateral boundary conditions,sea surface temperatures,and initial land surface conditions to regional climate models( RCMs). There are two methods of downscaling: offline coupling and online coupling. The two kinds of coupling methods are described in detail by coupling the Weather Research and Forecasting model( WRF) with the Institute of Atmospheric Physics of Chinese Academy of Sciences Atmospheric General Circulation Model Version 4. 0( IAP AGCM4. 0) in the study. And the extreme precipitation event over Beijing on July 212012 is simulated by using the two coupling methods. Results show that online coupling method is of great value in improving the model simulation. Furthermore,the data exchange frequency of online coupling has some effect on simulation result.
文摘To improve the performance of the single layer flow insulation system utilizing open-cellular porous plate, the multilayer porous gas enthalpy-radiation converter is proposed and investigated experimentally and theoretically. Two open-cellular porous materials with different porosity pore per inch and surface reflectivity have been examined. Each porous plate has the same thickness of a half of the single layer one. Both porous materials are not combined continuously but divided by free space. For the prediction model, two energy equations of the fluid and solid phases are employed, in which the convective heat transfer between both phases is described based on the empirical volumetric heat transfer coefficient. In addition, the radiative transfer equations are resolved by Pj approximation. When an equivalent blackbody radiation temperature of the radiation coming from the upstream region exceeds inlet gas temperature, use of a high reflective porous plate on the upstream side and a low reflective porous plate on the downstream side is quite effective to increase gas temperature drop across the converter. the multilayer porous converter should be made of pure scattering and porous layer, respectively. In order to obtain maximum gas temperature drop in that case, pure absorbing porous plate as the upstream and downstream