富锂层状氧化物材料是一种具有类固溶体结构的锂离子电池正极材料,放电比容量可达250 m Ah/g,且价格低廉。因此,富锂层状氧化物材料被认为是最有希望的下一代正极材料之一。然而,富锂层状材料还存在诸多问题,如首次库仑效率低、倍率性...富锂层状氧化物材料是一种具有类固溶体结构的锂离子电池正极材料,放电比容量可达250 m Ah/g,且价格低廉。因此,富锂层状氧化物材料被认为是最有希望的下一代正极材料之一。然而,富锂层状材料还存在诸多问题,如首次库仑效率低、倍率性能差以及容量和电压平台衰减严重,这些问题阻碍其在商业中的应用。本文从富锂层状材料的晶型结构和首次充放电特性出发,主要介绍了离子掺杂、表面包覆以及表面氧空位修饰的作用机理,并进一步分析了不同掺杂离子和不同包覆材料作用于富锂层状材料后性能差异的原因,以及双掺杂和双包覆的优势。最后,本文针对单纯的离子掺杂、表面包覆、表面氧空位修饰在富锂层状材料改性中的不足,提出了基于上述三种改性方式的联合改性机制,并对该机制进行了简要介绍。展开更多
The effect of molybdenum oxide on the activity and durability of Ce O2-Ti O2 catalyst for NO reduction by NH3 was examined. It was found that the introduction of Mo could improve the low-temperature NH3-SCR activity a...The effect of molybdenum oxide on the activity and durability of Ce O2-Ti O2 catalyst for NO reduction by NH3 was examined. It was found that the introduction of Mo could improve the low-temperature NH3-SCR activity and SO2/H2 O durability of the Ce O2-Ti O2 catalyst and an optimal loading of Mo was 4?wt.%. The best Mo O3/Ce O2-Ti O2 catalyst displayed over 90% NO conversion from 200 °C to 400 °C and obtained 4-fold increase in NO conversion compared to Ce O2-Ti O2 at 150 °C. The characterization results revealed that the number of Br?nsted acid sites over Mo O3/Ce O2-Ti O2 was significantly increased, and the adsorption of nitrate species was dramatically weakened because of the coverage of Mo O3, which were favorable for the high NH3-SCR performance. It is believed that the Mo O3/Ce O2-Ti O2 catalyst is a suitable substitute for the NH3-SCR reaction.展开更多
Al2O3 ceramic powder was applied to modify the large pores defects on the surface of the porous metal Ti support,in situ oxidation method was a convenient method to prepare defect free ceramic/Ti composite membranes o...Al2O3 ceramic powder was applied to modify the large pores defects on the surface of the porous metal Ti support,in situ oxidation method was a convenient method to prepare defect free ceramic/Ti composite membranes on this basis.In situ oxidation conditions experimental results show that the best condition for preparing the TiO2-Al2O3/Ti composite membrane is under 800°C for 2 h,and the microstructure and pore sizes of the TiO2-Al2O3/Ti composite membranes are affected obviously.The thickness and composition of the TiO2/Ti composite membranes are determined by SEM and XRD completely.The pore size distribution of the composite membrane is measured by bubble pressure method,the most probable aperture is about 3.12μm,while the average pore size of defect free TiO2-Al2O3/Ti is about 3.23μm.After ultrasonic treatment,the slight weight change of membranes reveals no observable change,which indicates that TiO2-Al2O3/Ti composite membranes maintain a good stability.展开更多
The surface modification of metal oxides using organic modifiers is a potential strategy for enhancing their catalytic performances.In this study,a hydrophobic surface amine-modified CoO catalyst with a water contact ...The surface modification of metal oxides using organic modifiers is a potential strategy for enhancing their catalytic performances.In this study,a hydrophobic surface amine-modified CoO catalyst with a water contact angle of 143°was fabricated.The catalyst was characterized by XRD,TGA,FT-IR,HR-TEM,and XPS.The results showed that the fabricated catalyst performed better than the hydrophilic commercial CoO nanoparticle in the process of aromatic hydrocarbon oxidation.After the amines modification,commercial CoO also became hydrophobic and improved conversion of ethylbenzene was achieved.The surface modification of CoO with amines induced the hydrophobicity property,which could serve as a reference for the design of other hydrophobic catalysts.展开更多
This review focused on the recent reports related to the function, characterization and modification of oxygen-containing surface groups of activated carbon (AC). The Oxygen-containing surface groups were briefly desc...This review focused on the recent reports related to the function, characterization and modification of oxygen-containing surface groups of activated carbon (AC). The Oxygen-containing surface groups were briefly described, and the most frequently used techniques for characterization of the oxygen-containing surface groups on ACs were also briefly stated. A detailed discussion of the effects of the oxygen-containing surface groups on the adsorptive capacity of AC was given. The recent progresses in modification of the oxygen-containing surface groups of AC were also reviewed.展开更多
Electrocatalytic CO_(2) reduction has attracted growing attention as a promising route to realize artificial carbon recycling.Proton transfer plays an essential role in CO_(2) reduction and dramatically impacts produc...Electrocatalytic CO_(2) reduction has attracted growing attention as a promising route to realize artificial carbon recycling.Proton transfer plays an essential role in CO_(2) reduction and dramatically impacts product distribution.However,the precise control of proton transfer during CO_(2) reduction remains challenging.In this study,we present a well-controlled proton transfer through the modification of several purines with similar molecular structures,and reveal a direct correlation between surface proton transfer capability and CO_(2) reduction selectivity over Cu electrode.With a moderate proton transfer capability,the guanine modification can remarkably boost CH_(4) production and suppress C2 products formation.In-situ ATR-SEIRAS suggests a weakened^(*)CO intermediate adsorption and a relatively low local pH environment after the guanine modification,which facilitates the^(*)CO protonation and detachment for CH_(4) generation.展开更多
Magnesium hydroxide(MH),which is commonly used as a halogen-free flame retardant filler in composite materials,was modified by silanization reaction with γ-aminopropyltriethoxysilane (γ-APS) in aqueous solution at d...Magnesium hydroxide(MH),which is commonly used as a halogen-free flame retardant filler in composite materials,was modified by silanization reaction with γ-aminopropyltriethoxysilane (γ-APS) in aqueous solution at different pH values (pH range from 8.0 to 12.0). The surface properties of grafted γ-APS on MH surface as a function of solution pH value were studied using elemental analysis,Fourier transform infrared spectroscopy and zeta potential measurement. The results show that hydrolysis and condensation of γ-APS are activated in alkaline solution and lead to multilayer adsorption of γ-APS molecules on the surface of MH. The type of adsorption orientation of γ-APS on MH surface is a function of coverage density that is altered by changing solution pH value. At low coverage density (e.g. 55 nm-2),γ-APS molecules are preferentially adsorbed to the surface with the silicon moiety towards the surface,and increasing coverage density (e.g. 90 nm-2) leads to parallel orientation. At an even higher coverage density (e.g. 115 nm-2),γ-APS molecules bond to the surface with the amino moiety towards the surface.展开更多
文摘富锂层状氧化物材料是一种具有类固溶体结构的锂离子电池正极材料,放电比容量可达250 m Ah/g,且价格低廉。因此,富锂层状氧化物材料被认为是最有希望的下一代正极材料之一。然而,富锂层状材料还存在诸多问题,如首次库仑效率低、倍率性能差以及容量和电压平台衰减严重,这些问题阻碍其在商业中的应用。本文从富锂层状材料的晶型结构和首次充放电特性出发,主要介绍了离子掺杂、表面包覆以及表面氧空位修饰的作用机理,并进一步分析了不同掺杂离子和不同包覆材料作用于富锂层状材料后性能差异的原因,以及双掺杂和双包覆的优势。最后,本文针对单纯的离子掺杂、表面包覆、表面氧空位修饰在富锂层状材料改性中的不足,提出了基于上述三种改性方式的联合改性机制,并对该机制进行了简要介绍。
基金supported by the National Natural Science Foundation of China(21773106,21707066,21677069,and 21806077)the China Postdoctoral Science Foundation(2018M642206)~~
文摘The effect of molybdenum oxide on the activity and durability of Ce O2-Ti O2 catalyst for NO reduction by NH3 was examined. It was found that the introduction of Mo could improve the low-temperature NH3-SCR activity and SO2/H2 O durability of the Ce O2-Ti O2 catalyst and an optimal loading of Mo was 4?wt.%. The best Mo O3/Ce O2-Ti O2 catalyst displayed over 90% NO conversion from 200 °C to 400 °C and obtained 4-fold increase in NO conversion compared to Ce O2-Ti O2 at 150 °C. The characterization results revealed that the number of Br?nsted acid sites over Mo O3/Ce O2-Ti O2 was significantly increased, and the adsorption of nitrate species was dramatically weakened because of the coverage of Mo O3, which were favorable for the high NH3-SCR performance. It is believed that the Mo O3/Ce O2-Ti O2 catalyst is a suitable substitute for the NH3-SCR reaction.
基金Projects(212006065,21666018)supported by the National Natural Science Foundation of China
文摘Al2O3 ceramic powder was applied to modify the large pores defects on the surface of the porous metal Ti support,in situ oxidation method was a convenient method to prepare defect free ceramic/Ti composite membranes on this basis.In situ oxidation conditions experimental results show that the best condition for preparing the TiO2-Al2O3/Ti composite membrane is under 800°C for 2 h,and the microstructure and pore sizes of the TiO2-Al2O3/Ti composite membranes are affected obviously.The thickness and composition of the TiO2/Ti composite membranes are determined by SEM and XRD completely.The pore size distribution of the composite membrane is measured by bubble pressure method,the most probable aperture is about 3.12μm,while the average pore size of defect free TiO2-Al2O3/Ti is about 3.23μm.After ultrasonic treatment,the slight weight change of membranes reveals no observable change,which indicates that TiO2-Al2O3/Ti composite membranes maintain a good stability.
基金supported by the National Natural Science Foundation of China (21790331,21603218)the Strategic Priority Research Program of Chinese Academy of Sciences (XDA21030400,XDB17020300)~~
文摘The surface modification of metal oxides using organic modifiers is a potential strategy for enhancing their catalytic performances.In this study,a hydrophobic surface amine-modified CoO catalyst with a water contact angle of 143°was fabricated.The catalyst was characterized by XRD,TGA,FT-IR,HR-TEM,and XPS.The results showed that the fabricated catalyst performed better than the hydrophilic commercial CoO nanoparticle in the process of aromatic hydrocarbon oxidation.After the amines modification,commercial CoO also became hydrophobic and improved conversion of ethylbenzene was achieved.The surface modification of CoO with amines induced the hydrophobicity property,which could serve as a reference for the design of other hydrophobic catalysts.
基金National Natural Science Foundation of China (No. 20336020) and Science Foundation of Guangdong Province of China (2002C32103).
文摘This review focused on the recent reports related to the function, characterization and modification of oxygen-containing surface groups of activated carbon (AC). The Oxygen-containing surface groups were briefly described, and the most frequently used techniques for characterization of the oxygen-containing surface groups on ACs were also briefly stated. A detailed discussion of the effects of the oxygen-containing surface groups on the adsorptive capacity of AC was given. The recent progresses in modification of the oxygen-containing surface groups of AC were also reviewed.
文摘Electrocatalytic CO_(2) reduction has attracted growing attention as a promising route to realize artificial carbon recycling.Proton transfer plays an essential role in CO_(2) reduction and dramatically impacts product distribution.However,the precise control of proton transfer during CO_(2) reduction remains challenging.In this study,we present a well-controlled proton transfer through the modification of several purines with similar molecular structures,and reveal a direct correlation between surface proton transfer capability and CO_(2) reduction selectivity over Cu electrode.With a moderate proton transfer capability,the guanine modification can remarkably boost CH_(4) production and suppress C2 products formation.In-situ ATR-SEIRAS suggests a weakened^(*)CO intermediate adsorption and a relatively low local pH environment after the guanine modification,which facilitates the^(*)CO protonation and detachment for CH_(4) generation.
基金Projects(50574104 50574102) supported by the National Natural Science Foundation of China
文摘Magnesium hydroxide(MH),which is commonly used as a halogen-free flame retardant filler in composite materials,was modified by silanization reaction with γ-aminopropyltriethoxysilane (γ-APS) in aqueous solution at different pH values (pH range from 8.0 to 12.0). The surface properties of grafted γ-APS on MH surface as a function of solution pH value were studied using elemental analysis,Fourier transform infrared spectroscopy and zeta potential measurement. The results show that hydrolysis and condensation of γ-APS are activated in alkaline solution and lead to multilayer adsorption of γ-APS molecules on the surface of MH. The type of adsorption orientation of γ-APS on MH surface is a function of coverage density that is altered by changing solution pH value. At low coverage density (e.g. 55 nm-2),γ-APS molecules are preferentially adsorbed to the surface with the silicon moiety towards the surface,and increasing coverage density (e.g. 90 nm-2) leads to parallel orientation. At an even higher coverage density (e.g. 115 nm-2),γ-APS molecules bond to the surface with the amino moiety towards the surface.