Monodispersed manganese ferrite (MnFe2O4) nanocrystals could be successfully synthesized in large quantities via a facile synthetic technique based on the pyrolysis of organometallic compound precursor, in which oct...Monodispersed manganese ferrite (MnFe2O4) nanocrystals could be successfully synthesized in large quantities via a facile synthetic technique based on the pyrolysis of organometallic compound precursor, in which octadecene was used as solvent, and oleic acid and oleylamine were used as capping ligands. MnFe204 nanocrystals were obtained with size in a tunable range of 4- 15 nm and their morphologies could be tuned from spherical to triangle-shaped by varying the surfactants. The phase structure, morphology, and size of the products were characterized in detail by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Magnetic properties of MnFe2O4 nanocrystals with different morphologies were measured using a superconducting quantum interference device (SQUID). Both monodisperse MnFe204 nanocrystals with spherical and triangle-shapes are superparamagnetic at room temperature while ferromagnetic at 2 K. The pyrolysis method may provide an effective route to synthesize other spinel ferrites or metal oxides nanocrystals.展开更多
Manganese selenide (MnSe) possesses unique magnetic properties as an important magnetic semiconductor, but the synthesis and properties of MnSe nanocrystals are less developed compared to other semiconductor nanocry...Manganese selenide (MnSe) possesses unique magnetic properties as an important magnetic semiconductor, but the synthesis and properties of MnSe nanocrystals are less developed compared to other semiconductor nanocrystals because of the inability to obtain high-quality MnSe, especially in the metastable wurtzite structure. Here, we have successfully fabricated wurtzite MnSe nanocrystals via a colloidal approach which affords uniform crystal sizes and tailored shapes. The selective binding strength of the amine surfactant is the determining factor in shape-control and shape-evolution. Bullet-shapes could be transformed into shuttle-shapes if part of the oleylamine in the reaction solution was replaced by trioctylamine, and tetrapod-shaped nanocrystals could be formed in trioctylamine systems. The three-dimensional (3D) structure of the bullet-shaped nanorods has been demonstrated by the advanced transmission electron microscope (TEM) 3D-tomography technology. High-resolution TEM (HRTEM) and electron energy-loss spectroscopy (EELS) show that planar-defect structures such as stacking faults and twinning along the [001] direction arise during the growth of bullet-shapes. On the basis of careful HRTEM observations, we propose a "quadra-twin core" growth mechanism for the formation of wurtzite MnSe nanotetrapods. Furthermore, the wurtzite MnSe nanocrystals show low- temperature surface spin-glass behavior due to their noncompensated surface spins and the blocking temperatures increase from 8.4 K to 18.5 K with increasing surface area/volume ratio of the nanocrystals. Our results provide a systematic study of wurtzite MnSe nanocrystals.展开更多
基金Project(2010QZZD008) supported by the Prospect Key Projects of Fundamental Research Funds for the Central UniversitiesProject(2007FJ3008) supported by the Hunan Provincial Key Science and Technology Program of China
文摘Monodispersed manganese ferrite (MnFe2O4) nanocrystals could be successfully synthesized in large quantities via a facile synthetic technique based on the pyrolysis of organometallic compound precursor, in which octadecene was used as solvent, and oleic acid and oleylamine were used as capping ligands. MnFe204 nanocrystals were obtained with size in a tunable range of 4- 15 nm and their morphologies could be tuned from spherical to triangle-shaped by varying the surfactants. The phase structure, morphology, and size of the products were characterized in detail by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Magnetic properties of MnFe2O4 nanocrystals with different morphologies were measured using a superconducting quantum interference device (SQUID). Both monodisperse MnFe204 nanocrystals with spherical and triangle-shapes are superparamagnetic at room temperature while ferromagnetic at 2 K. The pyrolysis method may provide an effective route to synthesize other spinel ferrites or metal oxides nanocrystals.
文摘Manganese selenide (MnSe) possesses unique magnetic properties as an important magnetic semiconductor, but the synthesis and properties of MnSe nanocrystals are less developed compared to other semiconductor nanocrystals because of the inability to obtain high-quality MnSe, especially in the metastable wurtzite structure. Here, we have successfully fabricated wurtzite MnSe nanocrystals via a colloidal approach which affords uniform crystal sizes and tailored shapes. The selective binding strength of the amine surfactant is the determining factor in shape-control and shape-evolution. Bullet-shapes could be transformed into shuttle-shapes if part of the oleylamine in the reaction solution was replaced by trioctylamine, and tetrapod-shaped nanocrystals could be formed in trioctylamine systems. The three-dimensional (3D) structure of the bullet-shaped nanorods has been demonstrated by the advanced transmission electron microscope (TEM) 3D-tomography technology. High-resolution TEM (HRTEM) and electron energy-loss spectroscopy (EELS) show that planar-defect structures such as stacking faults and twinning along the [001] direction arise during the growth of bullet-shapes. On the basis of careful HRTEM observations, we propose a "quadra-twin core" growth mechanism for the formation of wurtzite MnSe nanotetrapods. Furthermore, the wurtzite MnSe nanocrystals show low- temperature surface spin-glass behavior due to their noncompensated surface spins and the blocking temperatures increase from 8.4 K to 18.5 K with increasing surface area/volume ratio of the nanocrystals. Our results provide a systematic study of wurtzite MnSe nanocrystals.