Accurate description of the adsorption process of reactants on metal surfaces from theory is crucial for mechanistic understanding of activity and selectivity of metal catalysts, but it remains challengeable for the n...Accurate description of the adsorption process of reactants on metal surfaces from theory is crucial for mechanistic understanding of activity and selectivity of metal catalysts, but it remains challengeable for the nowadays first-principles theory due to the lack of proper exchange-correlation functional describing the distinct interactions involved. We studied here the potential energy surfaces of ethylene adsorption on Ag(111), Rh(111) and Ir(111) using density functional theory calculations and (meta)-GGA functional including PBE, BEEF-vdW, SCAN, and SCAN+rVV10. For ethylene adsorption on noble metal Ag(111), it is found that BEEF-vdW, SCAN and SCAN+rVV10 predict the presence of the physisorption states only. For Rh(111), both SCAN and SCAN+rVV10 find that there is a precursor physisorption state before the chemisorption state. In contrast, there is no precursor state found based on potential energy surfaces from BEEF-vdW and PBE. Whereas for Ir(111), BEEF-vdW predicts the existence of a rather shallow precursor physisorption state, in addition to the chemisorption state. Irrespective to the transition metals considered, we find that SCAN+rVV10 gives the strongest binding strength, followed by SCAN, and PBE/BEEF-vdW, accordingly. The present work highlights great dependence of potential energy surface of ethylene adsorption on transition metal surfaces and exchange-correlation functionals.展开更多
Inefficient charge separation and limited light absorption are two critical issues associated with high‐efficiency photocatalytic H2production using TiO2.Surface defects within a certain concentration range in photoc...Inefficient charge separation and limited light absorption are two critical issues associated with high‐efficiency photocatalytic H2production using TiO2.Surface defects within a certain concentration range in photocatalyst materials are beneficial for photocatalytic activity.In this study,surface defects(oxygen vacancies and metal cation replacement defects)were induced with a facile and effective approach by surface doping with low‐cost transition metals(Co,Ni,Cu,and Mn)on ultrafine TiO2.The obtained surface‐defective TiO2exhibited a3–4‐fold improved activity compared to that of the original ultrafine TiO2.In addition,a H2production rate of3.4μmol/h was obtained using visible light(λ>420nm)irradiation.The apparent quantum yield(AQY)at365nm reached36.9%over TiO2‐Cu,significantly more than the commercial P25TiO2.The enhancement of photocatalytic H2production activity can be attributed to improved rapid charge separation efficiency andexpanded light absorption window.This hydrothermal treatment with transition metal was proven to be a very facile and effective method for obtaining surface defects.展开更多
This investigation was carried out to study the effect of aggregate roughness on ITZ (interfacial transition zone) at same water/cement ratio and the influence of silica fume on the bond strength. On the experimenta...This investigation was carried out to study the effect of aggregate roughness on ITZ (interfacial transition zone) at same water/cement ratio and the influence of silica fume on the bond strength. On the experimental side, two types of aggregates (limestone and granite) were used, which were prepared with broken surface. Cement (Type I) was used with same w/c ratio for all batches. In order to study the effect of silica fume on the bond, the same mixes were produced with 8% silica fume. Three different tests were performed: "pull a part", Brazilian test and compressive strength test. The specimens for Brazilian and compressive strength were tested after 28 days, while the "pull a part" specimens were tested after 29 days. The result showed that the bond strength is influenced by the surface roughness of aggregate. For the same mix, limestone recorded higher bond strength than granite. Moreover, the bond strength is increased by adding the silica fume.展开更多
The aim of this paper is to predict the phenomenon of laminar separation, transition and reattachment in a low-pressure turbine (LPT). Self-developed large eddy simulation program of compressible N-S equations was u...The aim of this paper is to predict the phenomenon of laminar separation, transition and reattachment in a low-pressure turbine (LPT). Self-developed large eddy simulation program of compressible N-S equations was used to describe the flow structures of T 106A LPT blade profile at Reynolds number of 1.1×10^5 based on the exit isentropic velocity and chord length. The com- putational results show the distributions of time-averaged wall-static pressure coefficient and mean skin-friction coefficient on the blade surface. The locations of laminar separation and reattachment points occur around 87% and 98% axial chord, which agree well with experiment data. The two-dimensional shear layer is gradually unstable along the downstream half of the suc- tion side as a result of the spanwise fluctuation and the roll up of shear layer via Kelvin-Helmholtz (KH) instability. Three-dimensional motions appear near 84% axial chord which later triggers spanwise vortexes and streamwise vortexes, leading to transition to turbulence in the separation bubble. Through introducing the concept of dissipation function, the high loss mainly comes from the places where strong shear layer and intense fluctuation exist. Furthermore, the separation region is only an accumulation center of the low-energy fluid rather than an area of loss source.展开更多
This paper studied the active-to-passive oxidative mechanism of C/SiC composite under high temperature and oxidative conditions. An analytic model and computational method were established based on the process of gas ...This paper studied the active-to-passive oxidative mechanism of C/SiC composite under high temperature and oxidative conditions. An analytic model and computational method were established based on the process of gas diffusion in boundary layer and the equilibrium relations in surface chemical reactions. Simultaneously, an engineering equation to predict the oxygen partial pressure of active-to-passive transition was derived under the specific temperature zone. The results indicated that the active-to-passive oxidation transition of C/SiC is closely related to the composition of the material. At certain temperature and oxygen partial pressure conditions, the composite with high carbon content is prone to cause active oxidation which is negative to the oxidation resistance of the material.展开更多
The phase-field crystal(PFC) model is employed to study the shape transition of strained islands in heteroepitaxy on vicinal substrates.The influences of both substrate vicinal angles β and the lattice mismatch ξ ar...The phase-field crystal(PFC) model is employed to study the shape transition of strained islands in heteroepitaxy on vicinal substrates.The influences of both substrate vicinal angles β and the lattice mismatch ξ are discussed.The increase of substrate vicinal angles is found to be capable of significantly changing the surface nanostructures of epitaxial films.The surface morphology of films undergoes a series of transitions that include Stranski-Krastonov(SK) islands,the couple growth of islands and the step flow as well as the formation of step bunching.In addition,the larger ξ indicates an increased strained island density after coarsening,and results in the incoherent growth of strained islands with the creation of misfit dislocations.Coarsening,coalescence and faceting of strained islands are also observed.Some facets in the shape transition of strained islands are found to be stable and can be determined by β and crystal symmetry of the film.展开更多
基金supported by the National Key R&D Program of China (No.2017YFB0602205 and No.2018YFA0208603)the National Natural Science Foundation of China (No.91645202)the Chinese Academy of Sciences (No.QYZDJ-SSW-SLH054)
文摘Accurate description of the adsorption process of reactants on metal surfaces from theory is crucial for mechanistic understanding of activity and selectivity of metal catalysts, but it remains challengeable for the nowadays first-principles theory due to the lack of proper exchange-correlation functional describing the distinct interactions involved. We studied here the potential energy surfaces of ethylene adsorption on Ag(111), Rh(111) and Ir(111) using density functional theory calculations and (meta)-GGA functional including PBE, BEEF-vdW, SCAN, and SCAN+rVV10. For ethylene adsorption on noble metal Ag(111), it is found that BEEF-vdW, SCAN and SCAN+rVV10 predict the presence of the physisorption states only. For Rh(111), both SCAN and SCAN+rVV10 find that there is a precursor physisorption state before the chemisorption state. In contrast, there is no precursor state found based on potential energy surfaces from BEEF-vdW and PBE. Whereas for Ir(111), BEEF-vdW predicts the existence of a rather shallow precursor physisorption state, in addition to the chemisorption state. Irrespective to the transition metals considered, we find that SCAN+rVV10 gives the strongest binding strength, followed by SCAN, and PBE/BEEF-vdW, accordingly. The present work highlights great dependence of potential energy surface of ethylene adsorption on transition metal surfaces and exchange-correlation functionals.
基金supported by the Double First‐rate Subject‐Food Science and Engineering Program of Hebei Province (2018SPGCA18)Young Tip‐top Talents Plan of Universities and Colleges in Hebei Province of China (BJ2017026)the Specific Foundation for Doctor in Hebei Agriculture University of China (ZD201709)~~
文摘Inefficient charge separation and limited light absorption are two critical issues associated with high‐efficiency photocatalytic H2production using TiO2.Surface defects within a certain concentration range in photocatalyst materials are beneficial for photocatalytic activity.In this study,surface defects(oxygen vacancies and metal cation replacement defects)were induced with a facile and effective approach by surface doping with low‐cost transition metals(Co,Ni,Cu,and Mn)on ultrafine TiO2.The obtained surface‐defective TiO2exhibited a3–4‐fold improved activity compared to that of the original ultrafine TiO2.In addition,a H2production rate of3.4μmol/h was obtained using visible light(λ>420nm)irradiation.The apparent quantum yield(AQY)at365nm reached36.9%over TiO2‐Cu,significantly more than the commercial P25TiO2.The enhancement of photocatalytic H2production activity can be attributed to improved rapid charge separation efficiency andexpanded light absorption window.This hydrothermal treatment with transition metal was proven to be a very facile and effective method for obtaining surface defects.
文摘This investigation was carried out to study the effect of aggregate roughness on ITZ (interfacial transition zone) at same water/cement ratio and the influence of silica fume on the bond strength. On the experimental side, two types of aggregates (limestone and granite) were used, which were prepared with broken surface. Cement (Type I) was used with same w/c ratio for all batches. In order to study the effect of silica fume on the bond, the same mixes were produced with 8% silica fume. Three different tests were performed: "pull a part", Brazilian test and compressive strength test. The specimens for Brazilian and compressive strength were tested after 28 days, while the "pull a part" specimens were tested after 29 days. The result showed that the bond strength is influenced by the surface roughness of aggregate. For the same mix, limestone recorded higher bond strength than granite. Moreover, the bond strength is increased by adding the silica fume.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.51121004)the National Natural Science Foundation of China(Grant No.50976026)
文摘The aim of this paper is to predict the phenomenon of laminar separation, transition and reattachment in a low-pressure turbine (LPT). Self-developed large eddy simulation program of compressible N-S equations was used to describe the flow structures of T 106A LPT blade profile at Reynolds number of 1.1×10^5 based on the exit isentropic velocity and chord length. The com- putational results show the distributions of time-averaged wall-static pressure coefficient and mean skin-friction coefficient on the blade surface. The locations of laminar separation and reattachment points occur around 87% and 98% axial chord, which agree well with experiment data. The two-dimensional shear layer is gradually unstable along the downstream half of the suc- tion side as a result of the spanwise fluctuation and the roll up of shear layer via Kelvin-Helmholtz (KH) instability. Three-dimensional motions appear near 84% axial chord which later triggers spanwise vortexes and streamwise vortexes, leading to transition to turbulence in the separation bubble. Through introducing the concept of dissipation function, the high loss mainly comes from the places where strong shear layer and intense fluctuation exist. Furthermore, the separation region is only an accumulation center of the low-energy fluid rather than an area of loss source.
基金supported by the National Natural Science Foundation of China (Grant No. 11172284)the International Science and Technology Cooperative Project from Ministry of Science and Technology (GrantNo. 2013DFA30820)
文摘This paper studied the active-to-passive oxidative mechanism of C/SiC composite under high temperature and oxidative conditions. An analytic model and computational method were established based on the process of gas diffusion in boundary layer and the equilibrium relations in surface chemical reactions. Simultaneously, an engineering equation to predict the oxygen partial pressure of active-to-passive transition was derived under the specific temperature zone. The results indicated that the active-to-passive oxidation transition of C/SiC is closely related to the composition of the material. At certain temperature and oxygen partial pressure conditions, the composite with high carbon content is prone to cause active oxidation which is negative to the oxidation resistance of the material.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51075335,51174168,10902086 and 50875217)the Northwestern Polytechnical University Foundation for Fundamental Research (Grant Nos. 201109 and NPU-FFR-JC201005)
文摘The phase-field crystal(PFC) model is employed to study the shape transition of strained islands in heteroepitaxy on vicinal substrates.The influences of both substrate vicinal angles β and the lattice mismatch ξ are discussed.The increase of substrate vicinal angles is found to be capable of significantly changing the surface nanostructures of epitaxial films.The surface morphology of films undergoes a series of transitions that include Stranski-Krastonov(SK) islands,the couple growth of islands and the step flow as well as the formation of step bunching.In addition,the larger ξ indicates an increased strained island density after coarsening,and results in the incoherent growth of strained islands with the creation of misfit dislocations.Coarsening,coalescence and faceting of strained islands are also observed.Some facets in the shape transition of strained islands are found to be stable and can be determined by β and crystal symmetry of the film.