Exposed to space plasma and solar radiation, electrostatic potential may build up in the lunar regolith, leading to a wealth of dust phenomena, including levitation, oscillation, and transport over the surface. Based ...Exposed to space plasma and solar radiation, electrostatic potential may build up in the lunar regolith, leading to a wealth of dust phenomena, including levitation, oscillation, and transport over the surface. Based on plasma sheath theory,the global near-surface plasma environment is modeled, and the dynamics of charged dust are investigated. Results show that sub-micron sized dust particles can be levitated by the electric field over the surface, forming a dust belt that changes in position and thickness depending on the solar zenith angle. On the dayside of the Moon, stably levitated particles are about ten times smaller, and collect in a thinner belt closer to the surface than do those on the nightside. Although the size and charge of stably levitated dust particles are dependent on ambient plasma conditions, initial charge and velocity, which are closely related to the dynamics of dust particles including charging, oscillation, and damping, will determine whether, or not, a particle can attain stable levitation. Horizontal electrostatic dust transport near to the terminator region may lead to net deposition of dust from the dark into the sunlit hemisphere. Finally, because of different charging processes that result due to rotation of the Moon, before precipitation,dust particles in the dusk terminator region may be transported much longer distances and oscillate to much higher altitude than these in the dawn terminator.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41174115)
文摘Exposed to space plasma and solar radiation, electrostatic potential may build up in the lunar regolith, leading to a wealth of dust phenomena, including levitation, oscillation, and transport over the surface. Based on plasma sheath theory,the global near-surface plasma environment is modeled, and the dynamics of charged dust are investigated. Results show that sub-micron sized dust particles can be levitated by the electric field over the surface, forming a dust belt that changes in position and thickness depending on the solar zenith angle. On the dayside of the Moon, stably levitated particles are about ten times smaller, and collect in a thinner belt closer to the surface than do those on the nightside. Although the size and charge of stably levitated dust particles are dependent on ambient plasma conditions, initial charge and velocity, which are closely related to the dynamics of dust particles including charging, oscillation, and damping, will determine whether, or not, a particle can attain stable levitation. Horizontal electrostatic dust transport near to the terminator region may lead to net deposition of dust from the dark into the sunlit hemisphere. Finally, because of different charging processes that result due to rotation of the Moon, before precipitation,dust particles in the dusk terminator region may be transported much longer distances and oscillate to much higher altitude than these in the dawn terminator.