目的探索用低强度电流(毫安级)处理碳纤维单丝的实验方法,讨论电热载荷对碳纤维表面物化性质的影响,为碳纤维复合材料电热损伤机制研究提供理论基础。方法采用直流恒流精密电源对T300碳纤维单丝以不同强度的电流通电,利用扫描电子显微镜...目的探索用低强度电流(毫安级)处理碳纤维单丝的实验方法,讨论电热载荷对碳纤维表面物化性质的影响,为碳纤维复合材料电热损伤机制研究提供理论基础。方法采用直流恒流精密电源对T300碳纤维单丝以不同强度的电流通电,利用扫描电子显微镜(SEM)和原子力显微镜(AFM)测试手段分析碳纤维表面形貌和粗糙度的变化,利用X射线光电子能谱(XPS)对电热处理后的碳纤维表面的化学性质进行分析,并得出纤维表面活性的变化。结果经过不同电流强度处理的碳纤维表面发生了明显的变化,2 m A和4 m A处理的纤维表面出现了很多裂纹,且粗糙度随着电流的升高而降低,6 m A处理的纤维表面沟壑被填充且粗糙度稍有上升;随着电流的升高,纤维表面的C含量随之升高,O含量则呈现相反趋势,C—C稍有降低,C—O键降低明显。结论电热载荷对纤维表面的浆料有烧蚀作用,未反应的浆料残留在碳纤维表面,并且使凹槽变浅,粗糙度也有所降低;电热产生的高温反应掉了很多上浆剂成分,使更多的纤维本体裸露出来,更多的羟基转化成了羰基和羧基,而纤维表面活性则稍有增强。展开更多
The Ti−45Nb(wt.%)alloy properties were investigated in relation to its potential biomedical use.Laser surface modification was utilized to improve its performance in biological systems.As a result of the laser treatme...The Ti−45Nb(wt.%)alloy properties were investigated in relation to its potential biomedical use.Laser surface modification was utilized to improve its performance in biological systems.As a result of the laser treatment,(Ti,Nb)O scale was formed and various morphological features appeared on the alloy surface.The electrochemical behavior of Ti−45Nb alloy in simulated body conditions was evaluated and showed that the alloy was highly resistant to corrosion deterioration regardless of additional laser surface modification treatment.Nevertheless,the improved corrosion resistance after laser treatment was evident(the corrosion current density of the alloy before laser irradiation was 2.84×10^(−8)A/cm^(2),while that after laser treatment with 5 mJ was 0.65×10^(−8)A/cm^(2))and ascribed to the rapid formation of a complex and passivating bi-modal surface oxide layer.Alloy cytotoxicity and effects of the Ti−45Nb alloy laser surface modification on the MRC-5 cell viability,morphology,and proliferation were also investigated.The Ti−45Nb alloy showed no cytotoxic effect.Moreover,cells showed improved viability and adherence to the alloy surface after the laser irradiation treatment.The highest average cell viability of 115.37%was attained for the alloy laser-irradiated with 15 mJ.Results showed that the laser surface modification can be successfully utilized to significantly improve alloy performance in a biological environment.展开更多
Leached Pt-Fe and Pt-Co catalysts were prepared by acid leaching the reduced catalysts in acid solution. Oxidation treatments of leached catalysts produced the structure o f metal oxides decorat-ing the surface of...Leached Pt-Fe and Pt-Co catalysts were prepared by acid leaching the reduced catalysts in acid solution. Oxidation treatments of leached catalysts produced the structure o f metal oxides decorat-ing the surface of nanoparticles. The fully oxidized Fe2O3 and Co3O4 species on Pt nanoparticle sur-faces result in the low performance of the CO complete oxidation (COOX) reaction. In contrast, un-saturated FeO and CoO surface species can be formed during exposure to the CO preferential oxida-tion (CO-PROX) reaction with an excess of H2, leading to a high O2 activation ability and enhancing the CO-PROX activity. The FeOx surface structures can be transformed between these two states by varying the reactive gas environments, exhibiting oscillating activity in these two reactions. Con-versely, the CoO surface structure formed in the H2 -rich atmosphere is stable when exposed to the COOX reaction and exhibits similar activity in these two reactions. It is hoped that this work may assist in understanding the important role of surface oxides in real reactions.展开更多
X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses were carried out to investigate the surface species and interfacial reactions during bioleaching of chalcopyrite by different strains of ...X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses were carried out to investigate the surface species and interfacial reactions during bioleaching of chalcopyrite by different strains of moderately thermophilic bacteria (45 °C). Results show that monosulfide (CuS), disulfide (S22?), polysulfide (Sn2?), elemental sulfur (S0) and sulfate (SO42?) are the main intermediate species on the surface of chalcopyrite during bioleaching byA. caldus,S. thermosulfidooxidans andL. ferriphilum. The low kinetics of dissolution of chalcopyrite inA. caldus can be mainly attributed to the incomplete dissolution of chalcopyrite and the passivation layer of polysulfide. Polysulfide and jarosite should be mainly responsible for the passivation of chalcopyrite in bioleaching byL. ferriphilumorS. thermosulfidooxidans. However, elemental sulfur should not be the main composition of passivation layer of chalcopyrite during bioleaching.展开更多
[Objective] The effect of baffled surface flow wetlands on water purification was studied in order to provide a reference for the ecological restoration of polluted river.[Method] Contents of some indexes like DO,TN,T...[Objective] The effect of baffled surface flow wetlands on water purification was studied in order to provide a reference for the ecological restoration of polluted river.[Method] Contents of some indexes like DO,TN,TP,NH+4-N,CODCr,SS,SD,etc.were determined in the band baffled surface flow wetlands with total area of 7 400 m2 at JiaLu riverside.[Result] Baffled surface flow wetlands could improve the effluent quality significantly,could enhance transparency and dissolved oxygen content and also could decrease SS content.The removal rate of TN was kept at more than 73% in summer and decreased to 23% in early winter;The removal rate of TP was little influenced by temperature,and it was kept at more than 77% in summer and still kept at more than 69% in autumn and winter;The removal rate of NH+4-N was kept at more than 83% in summer and decreased slightly in autumn and winter,but still kept at more than 75%;The removal rate of CODCr ranged from 14% to 50%.[Conclusion] Baffled surface flow wetlands could effectively improve the purification effect of surface flow wetlands,which is a feasible way for ecological restoration.展开更多
An important step for achieving the knowledge-based design freedom on nano-and interfacial materials is attained by elucidating the related surface and interface thermodynamics from the first principles so as to allow...An important step for achieving the knowledge-based design freedom on nano-and interfacial materials is attained by elucidating the related surface and interface thermodynamics from the first principles so as to allow engineering the microstructures for desired properties through smartly designing fabrication processing parameters.This is demonstrated for SnO2 nano-particle surfaces and also a technologically important Ag-SnO2 interface fabricated by in-situ internal oxidation.Based on defect thermodynamics,we first modeled and calculated the equilibrium surface and interface structures,and as well corresponding properties,as a function of the ambient temperature and oxygen partial pressure.A series of first principles energetics calculations were then performed to construct the equilibrium surface and interface phase diagrams,to describe the environment dependence of the microstructures and properties of the surfaces and interfaces during fabrication and service conditions.The use and potential application of these phase diagrams as a process design tool were suggested and discussed.展开更多
A thermodynamic model was developed for determining the surface tension of RE2O3-MgO-SiO2(RE=La, Nd, Sm, Gd and Y) melts considering the ionic radii of the components and Butler's equation. The temperature and com...A thermodynamic model was developed for determining the surface tension of RE2O3-MgO-SiO2(RE=La, Nd, Sm, Gd and Y) melts considering the ionic radii of the components and Butler's equation. The temperature and composition dependence of the surface tensions in molten RE2O3-MgO-SiO2 slag systems was reproduced by the present model using surface tensions and molar volumes of pure oxides, as well as the anionic and cationic radii of the melt components. The iso-surface tension lines of La2O3-MgO-SiO2 slag melt at 1873 K were calculated and the effects of slag composition on the surface tension were also investigated. The surface tensions of La2O3, Gd2O3, Nd2O3 and Y2O3 at 1873 K were evaluated as 686, 677, 664 and 541 m N/m, respectively. The surface tension of pure rare earth oxide melts linearly decreases with increasing cationic field strength, except for Y2O3 oxide, while Y2O3 has a much weaker surface tension. The evaluated results of the surface tension show good agreements with literature data, and the mean deviation of the present model is found to be 1.05% at 1873 K.展开更多
The poisoning effect of CO2 on the oxygen surface exchange kinetics of BSCF (Ba0.5 Sr0.5 Co0.8 Feo.2O3_δ) is investigated with a novel pulse isotopic exchange technique. The surface exchange rate of BSCF severely d...The poisoning effect of CO2 on the oxygen surface exchange kinetics of BSCF (Ba0.5 Sr0.5 Co0.8 Feo.2O3_δ) is investigated with a novel pulse isotopic exchange technique. The surface exchange rate of BSCF severely decreases after in situ exposure to CO2, which is ascribed to carbonate formation on the material surface. The detrimental effect of CO2 starts at a low temperature of 375 ℃ and concentration as low as 1%, and becomes more pro- nounced at higher temperatures. Degradation of the surface exchange kinetics is associated with a rapid loss of oxygen permeation performance of BSCF in CO2.展开更多
Changes in the surface structure of cell membrane and the contents of membrane pro- teins and nuclear DNA of human gastric cancer (BGC-823) cells treated with organotin compound (Et_2SnCl_2phen) were studied with a sc...Changes in the surface structure of cell membrane and the contents of membrane pro- teins and nuclear DNA of human gastric cancer (BGC-823) cells treated with organotin compound (Et_2SnCl_2phen) were studied with a scanning electron microscope (SEM),a scanning tunneling,micro- scope (STM),and a cytofluorophotometer.It was found that Et_2SnCl_2Phen not only inhibited the cell growth but also remarkably changed the surface structure of the membrane of cancer cells.The surface of Et_2SnCl_2phen treated cancer cells was relatively smooth and showed fewer microvilli under SEM. STM images showed an uneven and loose distribution of the surface of the cell.In comparison with the untreated cancer cells,there was an evident decrease in the content of membrane proteins and nuclear DNA in Et_2SnCl_2phen treated cells.展开更多
Pyrite (FeS2) bulk and (100) surface properties and the oxygen adsorption on the surface were studied by using density functional theory methods. The results show that in the formation of FeS2 (100) surface, the...Pyrite (FeS2) bulk and (100) surface properties and the oxygen adsorption on the surface were studied by using density functional theory methods. The results show that in the formation of FeS2 (100) surface, there exists a process of electron transfer from Fe dangling bond to S dangling bond. In this situation, surface Fe and S atoms have more ionic properties. Both Fe2+ and S2- have high electrochemistry reduction activity, which is the base for oxygen adsorption. From the viewpoint of adsorption energy, the parallel form oxygen adsorption is in preference. The result also shows that the state of oxygen absorbed on FeS2 surface acts as peroxides rather than O2.展开更多
Binary oxide catalysts with various weight percentage V2O5 loadings were prepared by solid‐state dispersion and the nanocomposites were modified with surfactants. The catalysts were analyzed using X‐ray diffraction,...Binary oxide catalysts with various weight percentage V2O5 loadings were prepared by solid‐state dispersion and the nanocomposites were modified with surfactants. The catalysts were analyzed using X‐ray diffraction, diffuse‐reflectance spectroscopy, Fourier‐transform infrared spectroscopy, scanning electron microscopy, and N2 adsorption‐desorption. The photocatalytic activities of the catalysts were evaluated in the degradation of 2,4‐dichlorophenol under ultraviolet irradiation. The photocatalytic activity of 50 wt%V2O5‐TiO2 (50V2O5‐TiO2) was higher than those of pure V2O5, TiO2, and P25. Interactions between V2O5 and TiO2 affected the photocatalytic efficiencies of the binary oxide catalysts. Cetyltrimethylammonium bromide (CTAB) and hexadecyltrimethylammonium bromide (HTAB) significantly enhanced the efficiency of the 50V2O5‐TiO2 catalyst. The highest per‐centage of 2,4‐dichlorophenol degradation (100%) and highest reaction rate (2.22 mg/(L·min)) were obtained in 30 min with the (50V2O5‐TiO2)‐CTAB catalyst. It is concluded that the addition of a surfactant to the binary oxide significantly enhanced the photocatalytic activity by modifying the optical and electronic properties of V2O5 and TiO2.展开更多
Cosmogenic Ne isotopes are stable and are routinely used for constraining the timing of events and the rate of surface change beyond the limit that can be studied with radionuclides ^10Be, ^26Al, and ^36Cl. Cosmogenic...Cosmogenic Ne isotopes are stable and are routinely used for constraining the timing of events and the rate of surface change beyond the limit that can be studied with radionuclides ^10Be, ^26Al, and ^36Cl. Cosmogenic Ne analysis can be used in quartz and in a range of other minerals. Analysis typically requires significantly less material than do cosmogenic ^10Be and ^26Al, opening up the technique for small samples--individual pebbles in fiver sediments, for example. Analysis is easier and faster than for radionuclides, not least because Ne measurements do not require significant chemical procedures. However, the presence of other sources of Ne in minerals tends to restrict the use of cosmogenic ^21Ne to old landscapes and long exposure durations. In this review we briefly outline the background of cosmogenic Ne production in rocks and minerals at the Earth's surface, then document the key uses of the technique by highlighting some earlier studies, and finish with a short perspective on the future of the technique.展开更多
文摘目的探索用低强度电流(毫安级)处理碳纤维单丝的实验方法,讨论电热载荷对碳纤维表面物化性质的影响,为碳纤维复合材料电热损伤机制研究提供理论基础。方法采用直流恒流精密电源对T300碳纤维单丝以不同强度的电流通电,利用扫描电子显微镜(SEM)和原子力显微镜(AFM)测试手段分析碳纤维表面形貌和粗糙度的变化,利用X射线光电子能谱(XPS)对电热处理后的碳纤维表面的化学性质进行分析,并得出纤维表面活性的变化。结果经过不同电流强度处理的碳纤维表面发生了明显的变化,2 m A和4 m A处理的纤维表面出现了很多裂纹,且粗糙度随着电流的升高而降低,6 m A处理的纤维表面沟壑被填充且粗糙度稍有上升;随着电流的升高,纤维表面的C含量随之升高,O含量则呈现相反趋势,C—C稍有降低,C—O键降低明显。结论电热载荷对纤维表面的浆料有烧蚀作用,未反应的浆料残留在碳纤维表面,并且使凹槽变浅,粗糙度也有所降低;电热产生的高温反应掉了很多上浆剂成分,使更多的纤维本体裸露出来,更多的羟基转化成了羰基和羧基,而纤维表面活性则稍有增强。
基金the Ministry of Science,Technological Development and Innovation of the Republic of Serbia(No.451-03-47/2023-01/200017)the PhD fellowship of Slađana LAKETIĆ.Authors would also like to acknowledge the help of Dr.Anton HOHENWARTER from the Department of Materials Science,Montanuniversitat Leoben,Austria,during the Ti−45Nb alloy microstructural analysis.
文摘The Ti−45Nb(wt.%)alloy properties were investigated in relation to its potential biomedical use.Laser surface modification was utilized to improve its performance in biological systems.As a result of the laser treatment,(Ti,Nb)O scale was formed and various morphological features appeared on the alloy surface.The electrochemical behavior of Ti−45Nb alloy in simulated body conditions was evaluated and showed that the alloy was highly resistant to corrosion deterioration regardless of additional laser surface modification treatment.Nevertheless,the improved corrosion resistance after laser treatment was evident(the corrosion current density of the alloy before laser irradiation was 2.84×10^(−8)A/cm^(2),while that after laser treatment with 5 mJ was 0.65×10^(−8)A/cm^(2))and ascribed to the rapid formation of a complex and passivating bi-modal surface oxide layer.Alloy cytotoxicity and effects of the Ti−45Nb alloy laser surface modification on the MRC-5 cell viability,morphology,and proliferation were also investigated.The Ti−45Nb alloy showed no cytotoxic effect.Moreover,cells showed improved viability and adherence to the alloy surface after the laser irradiation treatment.The highest average cell viability of 115.37%was attained for the alloy laser-irradiated with 15 mJ.Results showed that the laser surface modification can be successfully utilized to significantly improve alloy performance in a biological environment.
基金supported by the National Natural Science Foundation of China(21403004,21403003)~~
文摘Leached Pt-Fe and Pt-Co catalysts were prepared by acid leaching the reduced catalysts in acid solution. Oxidation treatments of leached catalysts produced the structure o f metal oxides decorat-ing the surface of nanoparticles. The fully oxidized Fe2O3 and Co3O4 species on Pt nanoparticle sur-faces result in the low performance of the CO complete oxidation (COOX) reaction. In contrast, un-saturated FeO and CoO surface species can be formed during exposure to the CO preferential oxida-tion (CO-PROX) reaction with an excess of H2, leading to a high O2 activation ability and enhancing the CO-PROX activity. The FeOx surface structures can be transformed between these two states by varying the reactive gas environments, exhibiting oscillating activity in these two reactions. Con-versely, the CoO surface structure formed in the H2 -rich atmosphere is stable when exposed to the COOX reaction and exhibits similar activity in these two reactions. It is hoped that this work may assist in understanding the important role of surface oxides in real reactions.
基金Projects(51374248,51320105006)supported by the National Natural Science Foundation of ChinaProject(NCET-13-0595)supported by the Program for New Century Excellent Talents in University,ChinaProject(2014T70692)supported by China Postdoctoral Science Foundation
文摘X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses were carried out to investigate the surface species and interfacial reactions during bioleaching of chalcopyrite by different strains of moderately thermophilic bacteria (45 °C). Results show that monosulfide (CuS), disulfide (S22?), polysulfide (Sn2?), elemental sulfur (S0) and sulfate (SO42?) are the main intermediate species on the surface of chalcopyrite during bioleaching byA. caldus,S. thermosulfidooxidans andL. ferriphilum. The low kinetics of dissolution of chalcopyrite inA. caldus can be mainly attributed to the incomplete dissolution of chalcopyrite and the passivation layer of polysulfide. Polysulfide and jarosite should be mainly responsible for the passivation of chalcopyrite in bioleaching byL. ferriphilumorS. thermosulfidooxidans. However, elemental sulfur should not be the main composition of passivation layer of chalcopyrite during bioleaching.
基金Supported by Deep Purification Technology Project of Mixed Mode Wetland for Sewage Plant Waster Water in Dryland(2006AA6Z325)~~
文摘[Objective] The effect of baffled surface flow wetlands on water purification was studied in order to provide a reference for the ecological restoration of polluted river.[Method] Contents of some indexes like DO,TN,TP,NH+4-N,CODCr,SS,SD,etc.were determined in the band baffled surface flow wetlands with total area of 7 400 m2 at JiaLu riverside.[Result] Baffled surface flow wetlands could improve the effluent quality significantly,could enhance transparency and dissolved oxygen content and also could decrease SS content.The removal rate of TN was kept at more than 73% in summer and decreased to 23% in early winter;The removal rate of TP was little influenced by temperature,and it was kept at more than 77% in summer and still kept at more than 69% in autumn and winter;The removal rate of NH+4-N was kept at more than 83% in summer and decreased slightly in autumn and winter,but still kept at more than 75%;The removal rate of CODCr ranged from 14% to 50%.[Conclusion] Baffled surface flow wetlands could effectively improve the purification effect of surface flow wetlands,which is a feasible way for ecological restoration.
基金Project(51171211) supported by the National Natural Science Foundation of ChinaProject(NCET-10-0837) supported by the Chinese Ministry of Education's Supportive Program for New Century Excellent Talents in UniversitiesProject(2006BAE03B03) supported by the Chinese National Science and Technology Supportive Program
文摘An important step for achieving the knowledge-based design freedom on nano-and interfacial materials is attained by elucidating the related surface and interface thermodynamics from the first principles so as to allow engineering the microstructures for desired properties through smartly designing fabrication processing parameters.This is demonstrated for SnO2 nano-particle surfaces and also a technologically important Ag-SnO2 interface fabricated by in-situ internal oxidation.Based on defect thermodynamics,we first modeled and calculated the equilibrium surface and interface structures,and as well corresponding properties,as a function of the ambient temperature and oxygen partial pressure.A series of first principles energetics calculations were then performed to construct the equilibrium surface and interface phase diagrams,to describe the environment dependence of the microstructures and properties of the surfaces and interfaces during fabrication and service conditions.The use and potential application of these phase diagrams as a process design tool were suggested and discussed.
基金Project(51374020)supported by the National Natural Science Foundation of China
文摘A thermodynamic model was developed for determining the surface tension of RE2O3-MgO-SiO2(RE=La, Nd, Sm, Gd and Y) melts considering the ionic radii of the components and Butler's equation. The temperature and composition dependence of the surface tensions in molten RE2O3-MgO-SiO2 slag systems was reproduced by the present model using surface tensions and molar volumes of pure oxides, as well as the anionic and cationic radii of the melt components. The iso-surface tension lines of La2O3-MgO-SiO2 slag melt at 1873 K were calculated and the effects of slag composition on the surface tension were also investigated. The surface tensions of La2O3, Gd2O3, Nd2O3 and Y2O3 at 1873 K were evaluated as 686, 677, 664 and 541 m N/m, respectively. The surface tension of pure rare earth oxide melts linearly decreases with increasing cationic field strength, except for Y2O3 oxide, while Y2O3 has a much weaker surface tension. The evaluated results of the surface tension show good agreements with literature data, and the mean deviation of the present model is found to be 1.05% at 1873 K.
基金This work was supported by the National Natural Science Foundation of China (No.U1432108), the Fundamental Research Funds for the Central Universi- ties (No.XDJK2015C002 and No.WK2320000021), Provincial Natural Science Foundation (No.1408085ME85), Scientific Research Founda- tion for the Returned Overseas Chinese Scholars, State Education Ministry (No.WF2320000005), and the Opening Project of CAS Key Laboratory of Materials for Energy Conversion (No.KF2014003). Professor Henny J. M. Bouwmeester of University at Twente is deeply appreciated for fruitful discussions.
文摘The poisoning effect of CO2 on the oxygen surface exchange kinetics of BSCF (Ba0.5 Sr0.5 Co0.8 Feo.2O3_δ) is investigated with a novel pulse isotopic exchange technique. The surface exchange rate of BSCF severely decreases after in situ exposure to CO2, which is ascribed to carbonate formation on the material surface. The detrimental effect of CO2 starts at a low temperature of 375 ℃ and concentration as low as 1%, and becomes more pro- nounced at higher temperatures. Degradation of the surface exchange kinetics is associated with a rapid loss of oxygen permeation performance of BSCF in CO2.
文摘Changes in the surface structure of cell membrane and the contents of membrane pro- teins and nuclear DNA of human gastric cancer (BGC-823) cells treated with organotin compound (Et_2SnCl_2phen) were studied with a scanning electron microscope (SEM),a scanning tunneling,micro- scope (STM),and a cytofluorophotometer.It was found that Et_2SnCl_2Phen not only inhibited the cell growth but also remarkably changed the surface structure of the membrane of cancer cells.The surface of Et_2SnCl_2phen treated cancer cells was relatively smooth and showed fewer microvilli under SEM. STM images showed an uneven and loose distribution of the surface of the cell.In comparison with the untreated cancer cells,there was an evident decrease in the content of membrane proteins and nuclear DNA in Et_2SnCl_2phen treated cells.
文摘Pyrite (FeS2) bulk and (100) surface properties and the oxygen adsorption on the surface were studied by using density functional theory methods. The results show that in the formation of FeS2 (100) surface, there exists a process of electron transfer from Fe dangling bond to S dangling bond. In this situation, surface Fe and S atoms have more ionic properties. Both Fe2+ and S2- have high electrochemistry reduction activity, which is the base for oxygen adsorption. From the viewpoint of adsorption energy, the parallel form oxygen adsorption is in preference. The result also shows that the state of oxygen absorbed on FeS2 surface acts as peroxides rather than O2.
基金supported by The Scientific and Technological Research Council of Turkey(TUBITAK)within the research project 111M210[2011-2013]~~
文摘Binary oxide catalysts with various weight percentage V2O5 loadings were prepared by solid‐state dispersion and the nanocomposites were modified with surfactants. The catalysts were analyzed using X‐ray diffraction, diffuse‐reflectance spectroscopy, Fourier‐transform infrared spectroscopy, scanning electron microscopy, and N2 adsorption‐desorption. The photocatalytic activities of the catalysts were evaluated in the degradation of 2,4‐dichlorophenol under ultraviolet irradiation. The photocatalytic activity of 50 wt%V2O5‐TiO2 (50V2O5‐TiO2) was higher than those of pure V2O5, TiO2, and P25. Interactions between V2O5 and TiO2 affected the photocatalytic efficiencies of the binary oxide catalysts. Cetyltrimethylammonium bromide (CTAB) and hexadecyltrimethylammonium bromide (HTAB) significantly enhanced the efficiency of the 50V2O5‐TiO2 catalyst. The highest per‐centage of 2,4‐dichlorophenol degradation (100%) and highest reaction rate (2.22 mg/(L·min)) were obtained in 30 min with the (50V2O5‐TiO2)‐CTAB catalyst. It is concluded that the addition of a surfactant to the binary oxide significantly enhanced the photocatalytic activity by modifying the optical and electronic properties of V2O5 and TiO2.
基金supported by the basic scientific research fund, Institute of Geology, China Earthquake Administration (Grant Nos. IGCEA1504 and IGCEA1417)
文摘Cosmogenic Ne isotopes are stable and are routinely used for constraining the timing of events and the rate of surface change beyond the limit that can be studied with radionuclides ^10Be, ^26Al, and ^36Cl. Cosmogenic Ne analysis can be used in quartz and in a range of other minerals. Analysis typically requires significantly less material than do cosmogenic ^10Be and ^26Al, opening up the technique for small samples--individual pebbles in fiver sediments, for example. Analysis is easier and faster than for radionuclides, not least because Ne measurements do not require significant chemical procedures. However, the presence of other sources of Ne in minerals tends to restrict the use of cosmogenic ^21Ne to old landscapes and long exposure durations. In this review we briefly outline the background of cosmogenic Ne production in rocks and minerals at the Earth's surface, then document the key uses of the technique by highlighting some earlier studies, and finish with a short perspective on the future of the technique.