In order to obtain higher emission performance than that of a traditional M-type cathode, we have developed a new type impregnated dispenser cathode. The new cathode is impregnated with a new active substance with mol...In order to obtain higher emission performance than that of a traditional M-type cathode, we have developed a new type impregnated dispenser cathode. The new cathode is impregnated with a new active substance with molar ratio of 26BaO·29SrO·8Sc2O3 ·7CaO·Al2O3 . This paper introduces the emission performance, surface active material, and work function of the new cathode. At 1100℃B , the DC current density and pulse current density are 30.6±1.0 A/cm2 and 171.6±2.8 A/cm2 , respectively, 2.1 and 5.4 times of that of an M-type cathode. The work function of the new cathode is 1.668± 0.002 eV. High concentration O-Al-Sc-Sr-Ba and O-Al-Sc-Ba are found in the pores and at pore edges, respectively. By comparing the emission performances and surface characteristics of as-polished and as-cleaned cathodes, it is proposed that, the emission around pore ends forms the major part of the total emission for the new cathodes.展开更多
Exfoliated graphite oxide was prepared by an improved Hummers method and was then reduced to graphene with hydrazine in the presence of ammonium hydroxide.N2adsorption–desorption measurement showed that graphene so o...Exfoliated graphite oxide was prepared by an improved Hummers method and was then reduced to graphene with hydrazine in the presence of ammonium hydroxide.N2adsorption–desorption measurement showed that graphene so obtained had a specific surface area as high as 818 m2/g.Galvanostatic charge/discharge curves demonstrated that the as-prepared graphene exhibited a specific capacitance of 186.9 F/g at a current density of 0.1 A/g and that about 96%of the specific capacitance was retained after 2000 cycles at a current density of 5 A/g.展开更多
In this paper, the bacterial celluloses(BCs) were pyrolysed in nitrogen and then activated by KOH to form a porous three- dimension-network electrode material for supercapacitor applications. Activated pyrolysed bacte...In this paper, the bacterial celluloses(BCs) were pyrolysed in nitrogen and then activated by KOH to form a porous three- dimension-network electrode material for supercapacitor applications. Activated pyrolysed bacterial cellulose(APBC) samples with enlarged specific surface area and enhanced specific capacitances were obtained. In order to optimize electrochemical properties, APBC samples with different alkali-to-carbon ratios of 1, 2 and 3 were tested in two electrodes symmetrical capacitors. The optimized APBC sample holds the highest specific capacitance of 241.8 F/g, and the energy density of which is 5 times higher than that of PBC even at a current density of 5 A/g. This work presents a successful practice of preparing electrode material from environment-friendly biomass, bacterial cellulose.展开更多
Rapid improvement in the efficiency of GaN-based LEDs not only speed up its applications for general illumination, but offer the possibilities for data transmission. This review is to provide an overview of current pr...Rapid improvement in the efficiency of GaN-based LEDs not only speed up its applications for general illumination, but offer the possibilities for data transmission. This review is to provide an overview of current progresses of GaN-based LEDs for light communications. The modulation bandwidth of GaN-based LEDs has been first improved by optimizing the LED epilayer structures and the modulation bandwidth of 73 MHz was achieved at the driving current density of 40 A/cm2 by changing the multi-quantum well structures. After that, in order to increase the current density tolerance, different parallel flip-chip micro-LED arrays were fabricated. With a high injected current density of ~7900 A/cm2, a maximum modulation bandwidth of ~227 MHz was obtained with optical power greater than 30 mW. Besides the increase of carrier concentrations, the radiative recombination coefficient B was also enhanced by modifying the photon surrounding environment based on some novel nanostructures such as resonant cavity, surface plasmon, and photonic crystals. The optical 3 dB modulation bandwidth of GaN-based nanostructure LEDs with Ag nanoparticles was enhanced by 2 times compared with GaN-based nanostructure LEDs without Ag nanoparticles.Our results demonstrate that using the QW-SP coupling can effectively help to enhance the carrier spontaneous emission rate and also increase the modulation bandwidth for LEDs, especially for LEDs with high intrinsic IQE. In addition, we discuss the progress of the faster color conversion stimulated by GaN-based LEDs.展开更多
基金Supported by the National Natural Science Foundation of China (No. 60871053)the Major State Basic Research Development Program of China (No. 2013CB328901)
文摘In order to obtain higher emission performance than that of a traditional M-type cathode, we have developed a new type impregnated dispenser cathode. The new cathode is impregnated with a new active substance with molar ratio of 26BaO·29SrO·8Sc2O3 ·7CaO·Al2O3 . This paper introduces the emission performance, surface active material, and work function of the new cathode. At 1100℃B , the DC current density and pulse current density are 30.6±1.0 A/cm2 and 171.6±2.8 A/cm2 , respectively, 2.1 and 5.4 times of that of an M-type cathode. The work function of the new cathode is 1.668± 0.002 eV. High concentration O-Al-Sc-Sr-Ba and O-Al-Sc-Ba are found in the pores and at pore edges, respectively. By comparing the emission performances and surface characteristics of as-polished and as-cleaned cathodes, it is proposed that, the emission around pore ends forms the major part of the total emission for the new cathodes.
基金supported by the National Natural Science Foundation of China(Grant Nos.51072047,21271067)the Program for Innovative Research Team in University(Grant No.IRT-1237)
文摘Exfoliated graphite oxide was prepared by an improved Hummers method and was then reduced to graphene with hydrazine in the presence of ammonium hydroxide.N2adsorption–desorption measurement showed that graphene so obtained had a specific surface area as high as 818 m2/g.Galvanostatic charge/discharge curves demonstrated that the as-prepared graphene exhibited a specific capacitance of 186.9 F/g at a current density of 0.1 A/g and that about 96%of the specific capacitance was retained after 2000 cycles at a current density of 5 A/g.
基金supported by the Ministry of Science and Technology of China (2012CB933403)the National Natural Science Foundation of China (21173057, 51425302)the Chinese Academy of Sciences.
文摘In this paper, the bacterial celluloses(BCs) were pyrolysed in nitrogen and then activated by KOH to form a porous three- dimension-network electrode material for supercapacitor applications. Activated pyrolysed bacterial cellulose(APBC) samples with enlarged specific surface area and enhanced specific capacitances were obtained. In order to optimize electrochemical properties, APBC samples with different alkali-to-carbon ratios of 1, 2 and 3 were tested in two electrodes symmetrical capacitors. The optimized APBC sample holds the highest specific capacitance of 241.8 F/g, and the energy density of which is 5 times higher than that of PBC even at a current density of 5 A/g. This work presents a successful practice of preparing electrode material from environment-friendly biomass, bacterial cellulose.
基金supported by the National Natural Science Foundation of China(Grant No.11574306)the China International Science and Technology Cooperation Program(Grant No.2014DFG62280)the National High Technology Program of China(Grant No.2015AA03A101)
文摘Rapid improvement in the efficiency of GaN-based LEDs not only speed up its applications for general illumination, but offer the possibilities for data transmission. This review is to provide an overview of current progresses of GaN-based LEDs for light communications. The modulation bandwidth of GaN-based LEDs has been first improved by optimizing the LED epilayer structures and the modulation bandwidth of 73 MHz was achieved at the driving current density of 40 A/cm2 by changing the multi-quantum well structures. After that, in order to increase the current density tolerance, different parallel flip-chip micro-LED arrays were fabricated. With a high injected current density of ~7900 A/cm2, a maximum modulation bandwidth of ~227 MHz was obtained with optical power greater than 30 mW. Besides the increase of carrier concentrations, the radiative recombination coefficient B was also enhanced by modifying the photon surrounding environment based on some novel nanostructures such as resonant cavity, surface plasmon, and photonic crystals. The optical 3 dB modulation bandwidth of GaN-based nanostructure LEDs with Ag nanoparticles was enhanced by 2 times compared with GaN-based nanostructure LEDs without Ag nanoparticles.Our results demonstrate that using the QW-SP coupling can effectively help to enhance the carrier spontaneous emission rate and also increase the modulation bandwidth for LEDs, especially for LEDs with high intrinsic IQE. In addition, we discuss the progress of the faster color conversion stimulated by GaN-based LEDs.