The Ti−45Nb(wt.%)alloy properties were investigated in relation to its potential biomedical use.Laser surface modification was utilized to improve its performance in biological systems.As a result of the laser treatme...The Ti−45Nb(wt.%)alloy properties were investigated in relation to its potential biomedical use.Laser surface modification was utilized to improve its performance in biological systems.As a result of the laser treatment,(Ti,Nb)O scale was formed and various morphological features appeared on the alloy surface.The electrochemical behavior of Ti−45Nb alloy in simulated body conditions was evaluated and showed that the alloy was highly resistant to corrosion deterioration regardless of additional laser surface modification treatment.Nevertheless,the improved corrosion resistance after laser treatment was evident(the corrosion current density of the alloy before laser irradiation was 2.84×10^(−8)A/cm^(2),while that after laser treatment with 5 mJ was 0.65×10^(−8)A/cm^(2))and ascribed to the rapid formation of a complex and passivating bi-modal surface oxide layer.Alloy cytotoxicity and effects of the Ti−45Nb alloy laser surface modification on the MRC-5 cell viability,morphology,and proliferation were also investigated.The Ti−45Nb alloy showed no cytotoxic effect.Moreover,cells showed improved viability and adherence to the alloy surface after the laser irradiation treatment.The highest average cell viability of 115.37%was attained for the alloy laser-irradiated with 15 mJ.Results showed that the laser surface modification can be successfully utilized to significantly improve alloy performance in a biological environment.展开更多
Calcium phosphate coated Mg alloy was prepared. The phase constitute and surface morphology were identified and observed by X-ray diffractometer (XRD) and SEM. The results show that the coating is composed of flake-...Calcium phosphate coated Mg alloy was prepared. The phase constitute and surface morphology were identified and observed by X-ray diffractometer (XRD) and SEM. The results show that the coating is composed of flake-like CaHPO4-2H2O crystals. The corrosion resistance of the coated Mg alloy was measured by electrochemical polarization and immersion test in comparison with uncoated Mg alloy. Cytocompatibility was designed by observing the attachment, growth and proliferation of L929 cell on both coated and uncoated Mg alloy samples. The results display that the corrosion resistance of the coated Mg alloy is better than that of uncoated one. The immersion test also shows that the calcium phosphate coating can mitigate the corrosion of Mg alloy substrate, and tends to transform into hydroxyapatite (HA). Compared with uncoated Mg alloy, L929 cells exhibit good adherence, growth and proliferation characteristics on the coated Mg alloy, indicating that the cytocompatibility is significantly improved with the calcium phosphate coating.展开更多
The haemocompatibility of Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy was studied after surface heparinization. A layer of sol-gel TiO2 films was applied on the alloy samples followed by active treatment in the bio-functiona...The haemocompatibility of Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy was studied after surface heparinization. A layer of sol-gel TiO2 films was applied on the alloy samples followed by active treatment in the bio-functionalized solution for introducing the OH- and groups, and then the heparin was immobilized on the active TiO2 films through the electrostatic self assembly technology. It is shown that the heparinized films are mainly composed of anatase and rutile with smooth and dense surface. In vitro blood compatibility was evaluated by haemolysis test, clotting time and platelet adhesion behavior tests. The results show that the haemocompatibility of the alloy could be significantly improved by surface heparinization.展开更多
The influence of hydrofluoric acid(HF) treatment on the corrosion behavior of the Mg-0.5Ca alloys was investigated by immersion specimen in sodium hydroxide and HF solutions with various concentrations and durations...The influence of hydrofluoric acid(HF) treatment on the corrosion behavior of the Mg-0.5Ca alloys was investigated by immersion specimen in sodium hydroxide and HF solutions with various concentrations and durations at room temperature.Microstructural evolutions of the specimens were characterized by atomic force microscopy,X-ray diffraction,field-emission scanning electron microscopy.The corrosion resistance was examined through potentiodynamic polarization and immersion test in Kokubo solution.The results revealed that the fluoride treated Mg-0.5Ca alloys produced by immersion in 40% HF provided more uniform,dense and thicker coating layer(12.6 μm) compared with the 35% HF treated specimen.The electrochemical test showed that the corrosion resistance of fluoride treated specimen was 35 times higher compared with the untreated Mg-0.5Ca alloy specimen in Kokubo solution.In vitro degradation rate of the fluoride treated specimens was much lower than untreated Mg-0.5Ca alloy in Kokubo solution.After immersion test the surface of 40% HF treated sample showed a few corrosion dots,while untreated specimens were fully covered by corrosion products and delamination.Fluoride treated Mg-0.5Ca alloy with 40% HF is a promising candidate as biodegradable implants due to its low degradation kinetics and good biocompatibility.展开更多
Objective:To study the characteristics of the intraocular lens using ion beam sputtering depositing titanium nitride thin film on the intraocular lens(IOLs).Methods:To deposite titanium nitride thin film on the top of...Objective:To study the characteristics of the intraocular lens using ion beam sputtering depositing titanium nitride thin film on the intraocular lens(IOLs).Methods:To deposite titanium nitride thin film on the top of intraocular lens by ion beam sputtering depositing.We analyzed the surface morphology of intraocular lens through SEM and AFM.We detected intraocular lens resolution through the measurement of intraocular lens.Biocompatibility of intraocular lens is preliminary evaluated in this test.Results:The surface morphology of intraocular lens material was not changed,and was in line with the requirements of smoothness.Resolution was in line with national requirements.Unmodified and modified IOLs's cytotoxicity were 1 and 0.6 grade respectively.Hemolytic rates of modified and unmodified were both less than 5%.Conclusion:Ion beam sputtering deposition of objects didn't only affect the surface morphology and the basic optical performance,but also can enhance the biocompatibility of intraocular lens.Ion beam sputtering deposition technique has provided new methods for the surface modification of IOLs and PMMA materials.展开更多
The corrosion resistance and cytocompatibility of Ti-20 Zr-10 Nb-4 Ta(TZNT) alloy modified by surface laser treatment were investigated. The scanning electron microscopy(SEM) measurements indicated that laser trea...The corrosion resistance and cytocompatibility of Ti-20 Zr-10 Nb-4 Ta(TZNT) alloy modified by surface laser treatment were investigated. The scanning electron microscopy(SEM) measurements indicated that laser treatment on TZNT alloy generated groove morphologies with the width of^40 μm and the depth of ~10 μm on the surface. The water contact angles along the groove direction decreased by 51%compared with that of the untreated alloy. The laser treatment promoted the oxidation of metallic Ti, Zr and Nb and produced more stable oxides on surface. The corrosion potential increased by 50% and corrosion current density decreased by72% compared with that of the untreated alloy in the anodic polarization test for the alloy in Hank’s solution at 37°C. This indicated the improvement of the corrosion resistance by laser treatment. The cytotoxicity testing results showed that the laser-treated TZNT alloy performed similar MC3 T3-E1 cell viability compared with the untreated alloy. The cells displayed oriented growth along the groove direction due to the increased hydrophilicity. This novel material may be a new candidate in orthopedics and dentistry implantations fields.展开更多
Mesoporous silica nanoparticles (MSNs) are promising for drug delivery and other biomedical applications owing to their excellent chemical stability and biocompatibility. For these applications, a hollow morphology ...Mesoporous silica nanoparticles (MSNs) are promising for drug delivery and other biomedical applications owing to their excellent chemical stability and biocompatibility. For these applications, a hollow morphology with thin shell and open mesopores is preferred for MSNs in order to maximize the loading capacity of drugs. Herein we report a novel and direct synthesis of such an ideal drug delivery system in a dilute and alkaline solution of benzylcetyl- dimethylammonium chloride and diethylene glycol hexadecyl ether. The mixed surfactants can guide the formation of MSNs with cubic Ia3d mesostructure, and at a concentration of sodium hydroxide between 9.8 and 13.5 mM, hollow MSNs with uniform sizes of 90-120 nm and a single-unit-cell-thick shell are formed. A mechanism for the formation of the hollow Ia3d MSNs, designated as MMT-2, is proposed based on in situ small-angle X-ray scattering measurements and other analyses. MMT-2 exhibits much higher loading capacity of ibuprofen and degrades faster in simulated body fluid and phosphate buffered saline than non-hollow MSNs. The degradation of MMT-2 can be significantly retarded by modification with polyethylene glycol. More interestingly, the degradation of MMT-2 involves fragmentation instead of void formation, a phenomenon beneficial for their elimination. The results demonstrate the uniqueness of the hollow Ia3d MSNs and the great potential of the material for drug delivery and biomedical applications.展开更多
基金the Ministry of Science,Technological Development and Innovation of the Republic of Serbia(No.451-03-47/2023-01/200017)the PhD fellowship of Slađana LAKETIĆ.Authors would also like to acknowledge the help of Dr.Anton HOHENWARTER from the Department of Materials Science,Montanuniversitat Leoben,Austria,during the Ti−45Nb alloy microstructural analysis.
文摘The Ti−45Nb(wt.%)alloy properties were investigated in relation to its potential biomedical use.Laser surface modification was utilized to improve its performance in biological systems.As a result of the laser treatment,(Ti,Nb)O scale was formed and various morphological features appeared on the alloy surface.The electrochemical behavior of Ti−45Nb alloy in simulated body conditions was evaluated and showed that the alloy was highly resistant to corrosion deterioration regardless of additional laser surface modification treatment.Nevertheless,the improved corrosion resistance after laser treatment was evident(the corrosion current density of the alloy before laser irradiation was 2.84×10^(−8)A/cm^(2),while that after laser treatment with 5 mJ was 0.65×10^(−8)A/cm^(2))and ascribed to the rapid formation of a complex and passivating bi-modal surface oxide layer.Alloy cytotoxicity and effects of the Ti−45Nb alloy laser surface modification on the MRC-5 cell viability,morphology,and proliferation were also investigated.The Ti−45Nb alloy showed no cytotoxic effect.Moreover,cells showed improved viability and adherence to the alloy surface after the laser irradiation treatment.The highest average cell viability of 115.37%was attained for the alloy laser-irradiated with 15 mJ.Results showed that the laser surface modification can be successfully utilized to significantly improve alloy performance in a biological environment.
文摘Calcium phosphate coated Mg alloy was prepared. The phase constitute and surface morphology were identified and observed by X-ray diffractometer (XRD) and SEM. The results show that the coating is composed of flake-like CaHPO4-2H2O crystals. The corrosion resistance of the coated Mg alloy was measured by electrochemical polarization and immersion test in comparison with uncoated Mg alloy. Cytocompatibility was designed by observing the attachment, growth and proliferation of L929 cell on both coated and uncoated Mg alloy samples. The results display that the corrosion resistance of the coated Mg alloy is better than that of uncoated one. The immersion test also shows that the calcium phosphate coating can mitigate the corrosion of Mg alloy substrate, and tends to transform into hydroxyapatite (HA). Compared with uncoated Mg alloy, L929 cells exhibit good adherence, growth and proliferation characteristics on the coated Mg alloy, indicating that the cytocompatibility is significantly improved with the calcium phosphate coating.
基金Project (31100693/C100302) supported by the National Natural Science Foundation of ChinaProject (31011120049) supported by the Australia-China Special Fund, International Science Linkages Program co-supported by the Department of Innovation, Industry, Science and Research of Australia, and the Ministry of Science and Technology and National Science Foundation of China+1 种基金Project(2010ZDKG-96) supported by the Major Subject of "13115" Programs of Shaan’xi Province, ChinaProject (2012CB619102) supported by the National Basic Research Program of China
文摘The haemocompatibility of Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy was studied after surface heparinization. A layer of sol-gel TiO2 films was applied on the alloy samples followed by active treatment in the bio-functionalized solution for introducing the OH- and groups, and then the heparin was immobilized on the active TiO2 films through the electrostatic self assembly technology. It is shown that the heparinized films are mainly composed of anatase and rutile with smooth and dense surface. In vitro blood compatibility was evaluated by haemolysis test, clotting time and platelet adhesion behavior tests. The results show that the haemocompatibility of the alloy could be significantly improved by surface heparinization.
基金supported financially by Ministry of Higher Education of Malaysia under the Vote Number 78610
文摘The influence of hydrofluoric acid(HF) treatment on the corrosion behavior of the Mg-0.5Ca alloys was investigated by immersion specimen in sodium hydroxide and HF solutions with various concentrations and durations at room temperature.Microstructural evolutions of the specimens were characterized by atomic force microscopy,X-ray diffraction,field-emission scanning electron microscopy.The corrosion resistance was examined through potentiodynamic polarization and immersion test in Kokubo solution.The results revealed that the fluoride treated Mg-0.5Ca alloys produced by immersion in 40% HF provided more uniform,dense and thicker coating layer(12.6 μm) compared with the 35% HF treated specimen.The electrochemical test showed that the corrosion resistance of fluoride treated specimen was 35 times higher compared with the untreated Mg-0.5Ca alloy specimen in Kokubo solution.In vitro degradation rate of the fluoride treated specimens was much lower than untreated Mg-0.5Ca alloy in Kokubo solution.After immersion test the surface of 40% HF treated sample showed a few corrosion dots,while untreated specimens were fully covered by corrosion products and delamination.Fluoride treated Mg-0.5Ca alloy with 40% HF is a promising candidate as biodegradable implants due to its low degradation kinetics and good biocompatibility.
文摘Objective:To study the characteristics of the intraocular lens using ion beam sputtering depositing titanium nitride thin film on the intraocular lens(IOLs).Methods:To deposite titanium nitride thin film on the top of intraocular lens by ion beam sputtering depositing.We analyzed the surface morphology of intraocular lens through SEM and AFM.We detected intraocular lens resolution through the measurement of intraocular lens.Biocompatibility of intraocular lens is preliminary evaluated in this test.Results:The surface morphology of intraocular lens material was not changed,and was in line with the requirements of smoothness.Resolution was in line with national requirements.Unmodified and modified IOLs's cytotoxicity were 1 and 0.6 grade respectively.Hemolytic rates of modified and unmodified were both less than 5%.Conclusion:Ion beam sputtering deposition of objects didn't only affect the surface morphology and the basic optical performance,but also can enhance the biocompatibility of intraocular lens.Ion beam sputtering deposition technique has provided new methods for the surface modification of IOLs and PMMA materials.
基金supported by the National Natural Science Foundation of China (NSFC, 51771011)the Fundamental Research Funds for the Central Universities (KG12002601)
文摘The corrosion resistance and cytocompatibility of Ti-20 Zr-10 Nb-4 Ta(TZNT) alloy modified by surface laser treatment were investigated. The scanning electron microscopy(SEM) measurements indicated that laser treatment on TZNT alloy generated groove morphologies with the width of^40 μm and the depth of ~10 μm on the surface. The water contact angles along the groove direction decreased by 51%compared with that of the untreated alloy. The laser treatment promoted the oxidation of metallic Ti, Zr and Nb and produced more stable oxides on surface. The corrosion potential increased by 50% and corrosion current density decreased by72% compared with that of the untreated alloy in the anodic polarization test for the alloy in Hank’s solution at 37°C. This indicated the improvement of the corrosion resistance by laser treatment. The cytotoxicity testing results showed that the laser-treated TZNT alloy performed similar MC3 T3-E1 cell viability compared with the untreated alloy. The cells displayed oriented growth along the groove direction due to the increased hydrophilicity. This novel material may be a new candidate in orthopedics and dentistry implantations fields.
文摘Mesoporous silica nanoparticles (MSNs) are promising for drug delivery and other biomedical applications owing to their excellent chemical stability and biocompatibility. For these applications, a hollow morphology with thin shell and open mesopores is preferred for MSNs in order to maximize the loading capacity of drugs. Herein we report a novel and direct synthesis of such an ideal drug delivery system in a dilute and alkaline solution of benzylcetyl- dimethylammonium chloride and diethylene glycol hexadecyl ether. The mixed surfactants can guide the formation of MSNs with cubic Ia3d mesostructure, and at a concentration of sodium hydroxide between 9.8 and 13.5 mM, hollow MSNs with uniform sizes of 90-120 nm and a single-unit-cell-thick shell are formed. A mechanism for the formation of the hollow Ia3d MSNs, designated as MMT-2, is proposed based on in situ small-angle X-ray scattering measurements and other analyses. MMT-2 exhibits much higher loading capacity of ibuprofen and degrades faster in simulated body fluid and phosphate buffered saline than non-hollow MSNs. The degradation of MMT-2 can be significantly retarded by modification with polyethylene glycol. More interestingly, the degradation of MMT-2 involves fragmentation instead of void formation, a phenomenon beneficial for their elimination. The results demonstrate the uniqueness of the hollow Ia3d MSNs and the great potential of the material for drug delivery and biomedical applications.