Extreme heat events have serious effects on human daily life. Accurately capturing the dynamic variance of extreme high-temperature distributions in a timely manner is the basis for analyzing the potential impacts of ...Extreme heat events have serious effects on human daily life. Accurately capturing the dynamic variance of extreme high-temperature distributions in a timely manner is the basis for analyzing the potential impacts of extreme heat, thereby informing risk prevention strategies. This paper demonstrates the potential application of multiple source remote sensing data in mapping and monitoring the extreme heat events that occurred on Aug. 8, 2013 in Jiangsu Province, China. In combination with MODIS products, the thermal sharpening(Ts HARP) method and a binary linear model are compared to downscale the original daytime FengY un 2 F(FY-2 F) land surface temperature(LST) imagery, with a temporal resolution of 60 min, from 5 km to 1 km. Using the meteorological measurement data from Nanjing station as the reference, the research then estimates the instantaneous air temperature by using an iterative computation based on the Surface Energy Balance Algorithm for Land(SEBAL), which is used to analyze the spatio-temporal air temperature variance. The results show that the root mean square error(RMSE) of the LST downscaled from the binary linear model is 1.30℃ compared to the synchronous MODIS LST, and on this basis the estimated air temperature has the RMSE of 1.78℃. The spatial and temporal distribution of air temperature variance at each geographical location from 06:30 to 18:30 can be accurately determined, and indicates that the high temperature gradually increases and expands from the city center. For the spatial distribution, the air temperature and the defined scorching temperature proportion index increase from northern to middle, to southern part of Jiangsu, and are slightly lower in the eastern area near the Yellow Sea. In terms of temporal characteristics, the percentage of area with air temperature above 37℃ in each city increase with time after 10:30 and reach the peak value at 14:30 or 15:30. Then, they decrease gradually, and the rising and falling trends become smaller from the southern cities to the northern regions. Moreover, there is a distinct positive relationship between the percentage of area above 37℃ and the population density. The above results show that the spatio-temporal distributions of heat waves and their influencing factors can be determined by combining multiple sources of remotely sensed image data.展开更多
Variations in surface air temperature and precipitation are closely associated because of their thermodynamic relations. The climate shift in the late 1970s and associated changes in precipitation over East Asia have ...Variations in surface air temperature and precipitation are closely associated because of their thermodynamic relations. The climate shift in the late 1970s and associated changes in precipitation over East Asia have been well reported. However, how the covariability of surface air temperature and precipitation responds to the climate shift is not yet well understood. We used the observed mean(Tmean), daily maximum(Tmax), and minimum(Tmin) surface air temperatures and precipitation during the period of 1953–2000 to explore this issue. Results show that the covariability between Tmean and precipitation experienced remarkable changes over certain areas of East Asia after the climate shift with evident seasonal dependencies. In winter, after the climate shift significantly negative correlations occupied more areas over Mongolia and China. By contrast, in summer after the climate shift significantly negative correlations which existed over almost entire East Asia during the pre-shift period were mostly weakened with the exception of enhanced correlations over some small isolated areas. Changes in the covariability of Tmax and precipitation showed a similar spatial pattern to that of the Tmean, whereas the Tmin-precipitation covariability did not. In winter, after the climate shift positive correlations between Tmin and precipitation over southern China were largely weakened, while the areas with significantly negative correlations increased over Mongolia. In summer, changes in Tmin-precipitation covariability appeared to be a negative-positive-negative pattern from south to north over East Asia, with positive changes occurring in the Yangtze-Huai River valley and Korea and negative changes occurring over South China and Japan, and northern part of East Asia.展开更多
This study assesses the historical climate trends of surface air temperature(SAT), their spatial distributions, and the hindcast skills for SAT during 1901– 2000 from 24 Coupled Model Intercomparison Project Phase ...This study assesses the historical climate trends of surface air temperature(SAT), their spatial distributions, and the hindcast skills for SAT during 1901– 2000 from 24 Coupled Model Intercomparison Project Phase 5(CMIP5) models. For the global averaged SAT, most of the models(17/24) effectively captured the increasing trends(0.64°C/century for the ensemble mean) as the observed values(- 0.6°C/century) during the period of 1901–2000, particularly during a rapid warming period of 1970–2000 with the small model spread. In addition, most of the models(22/24) showed high hindcast skills(the correlation coefficient, R 〉 0.8). For the spatial pattern of SAT, the models better simulated the relatively larger warming at the middle-to-high latitudes in the Northern Hemisphere than that in the Southern Hemisphere and the greater warming on the land than that in the ocean between 40°S and 40°N. The simulations underestimated the warming along some ocean boundaries but overestimated warming in the Arctic Ocean. Most of the coupled models were able to reproduce the large-scale features of SAT trends in most regions excluding Antarctica, some parts of the Pacific Ocean, the North Atlantic Ocean near Greenland, the southwestern Indian Ocean, and the Arctic Ocean. The outgoing longwave radiation(OLR) and incoming shortwave radiation(ISR) at the top of the atmosphere(TOA) and the downward longwave(LW) radiation and sensible heat flux at the surface had positive contributions to the increasing trends in most of the models.展开更多
The temporal and spatial variations of surface latent heat flux(SLHF)and diagnostic air temperature at 2m before and after the M_S5.7 earthquake occurring on November 26,2005 in the area between Ruichang City and Jiuj...The temporal and spatial variations of surface latent heat flux(SLHF)and diagnostic air temperature at 2m before and after the M_S5.7 earthquake occurring on November 26,2005 in the area between Ruichang City and Jiujiang City,Jiangxi Province are summarized in this paper.It is found that before the earthquake significant SLHF anomalies and air temperature anomalies occurred in the epicentral area and its vicinity.The air temperature anomalies appeared from the 2nd to the 13th of November,2005 and were concentrated at the epicentral area and in its southern part.Then two days later,that is,from the 4th to the 15th of November 2005,significant SLHF anomalies occurred in the epicentral area and to its northern area where many lakes are distributed along the active faults.During the anomalous period,the SLHF and air temperature at 2m exceeded the sum of average daily value over 26 years and 1.5 times of its mean square deviation.Both anomalies had maintained for 12 days with a peculiar distribution related to the tectonic active zone.It is considered that both of air temperature anomalies and SLHF anomalies are correlated to the movement of thermal flux from underground prior to earthquake.SLHF anomalies occurred over wide regions covered with abundant water,whereas air temperature anomalies occurred over land.展开更多
In this paper, the International Comprehensive Ocean and Atmosphere Data Set(ICOADS) is utilized to investigate the horizontal distribution of sea fog occurrence frequency over the Northern Atlantic as well as the met...In this paper, the International Comprehensive Ocean and Atmosphere Data Set(ICOADS) is utilized to investigate the horizontal distribution of sea fog occurrence frequency over the Northern Atlantic as well as the meteorological and oceanic conditions for sea fog formation. Sea fog over the Northern Atlantic mainly occurs over middle and high latitudes. Sea fog occurrence frequency over the western region of the Northern Atlantic is higher than that over the eastern region. The season for sea fog occurrence over the Northern Atlantic is generally from April to August. When sea fogs occur, the prevailing wind direction in the study area is from southerly to southwesterly and the favorable wind speed is around 8 m s-1. It is most favorable for the formation of sea fogs when sea surface temperature(SST) is 5℃ to 15℃. When SST is higher than 25℃, it is difficult for the air to get saturated, and there is almost no report of sea fog. When sea fogs form, the difference between sea surface temperature and air temperature is mainly-1 to 3℃, and the difference of 0℃ to 2℃ is the most favorable conditions for fog formation. There are two types of sea fogs prevailing in this region: advection cooling fog and advection evaporating fog.展开更多
The oceanic warm pool (OWP) defined by sea surface temperature (SST) is known as the "heat reservoir" in the ocean. The warmest portion in the ocean mirrors the fact that the wettest region with the largest accu...The oceanic warm pool (OWP) defined by sea surface temperature (SST) is known as the "heat reservoir" in the ocean. The warmest portion in the ocean mirrors the fact that the wettest region with the largest accumulation of water vapor (WV) in the atmosphere, termed atmospheric wet pool (AWP), should be identified because of the well-known Clausius-Clapeyron relationship between SST and WV. In this study, we used 14-year simultaneous observations of WV and SST from January 1988 to December 2001 to define the AWP and investigate its coupling and co-variations with the OWE The joint examination of the area variations, centroid locations, and zonal migrations of the AWP and OWP lead to a number of interesting findings. The results hopefully can contribute to our understanding of the air-sea interaction in general and characterization of E1 Nifio/La Nifia events in particular.展开更多
The self-calibrating Palmer Drought Severity Index (PDSI) is calculated using newly updated ground observations of monthly surface air temperature (SAT) and precipitation in China. The co-variabilities of PDSI and SAT...The self-calibrating Palmer Drought Severity Index (PDSI) is calculated using newly updated ground observations of monthly surface air temperature (SAT) and precipitation in China. The co-variabilities of PDSI and SAT are examined for summer for the period 1961-2004. The results show that there exist decadal climate co-variabilities and strong nonlinear interactions between SAT and soil moisture in many regions of China. Some of the co-variabilities can be linked to global warming. In summer,sig-nificant decadal co-variabilities from cool-wet to warm-dry conditions are found in the east region of Northwest China,North China,and Northeast China. An important finding is that in the west region of Northwest China and Southeast China,pronounced decadal co-variabilities take place from warm-dry to cool-wet conditions. Because significant warming was observed over most areas of the global land surface during the past 20-30 years,the shift to cool-wet conditions is a unique phenomenon which may deserve much scientific attention. The nonlinear interactions between SAT and soil moisture may partly account for the observed decadal co-variabilities. It is shown that anomalies of SAT will greatly affect the climatic co-variabilities,and changes of SAT may bring notable influence on the PDSI in China. These results provide observational evidence for increasing risks of decadal drought and wet-ness as anthropogenic global warming progresses.展开更多
To investigate the role of a single shield on steady temperature measurement using therrnocouples in hot air flow, a methodology for solving convection, conduction, and radiation in one single model is provided. In or...To investigate the role of a single shield on steady temperature measurement using therrnocouples in hot air flow, a methodology for solving convection, conduction, and radiation in one single model is provided. In order to compare with the experimental results, a cylindrical computational domain is established, which is the same size with the hot calibration wind-tannel. In the computational domain, two kinds of thermocouples, the bare-bead and the single-shielded thermocouples, are simulated respectively. Surface temperature distribution and the tempera- ture measurement bias of the two typical thermocouples are compared. The simulation results indicate that: 1) The existence of the shield reduces bead surface heat flux and changes the direction of wires inner heat conduction in a colder surrounding; 2) The existence of the shield reduces the temperature measurement bias both by improving bead surface temperature and by reducing surface temperature gradient; 3) The shield effectively reduces the effect of the ambient temperature on the temperature measurement bias; 4) The shield effectively reduces the influence of airflow velocity on the temperature measurement bias.展开更多
基金Under the auspices of the Natural Science Foundation of China(No.41571418,41401471)Qing Lan Projectthe Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Extreme heat events have serious effects on human daily life. Accurately capturing the dynamic variance of extreme high-temperature distributions in a timely manner is the basis for analyzing the potential impacts of extreme heat, thereby informing risk prevention strategies. This paper demonstrates the potential application of multiple source remote sensing data in mapping and monitoring the extreme heat events that occurred on Aug. 8, 2013 in Jiangsu Province, China. In combination with MODIS products, the thermal sharpening(Ts HARP) method and a binary linear model are compared to downscale the original daytime FengY un 2 F(FY-2 F) land surface temperature(LST) imagery, with a temporal resolution of 60 min, from 5 km to 1 km. Using the meteorological measurement data from Nanjing station as the reference, the research then estimates the instantaneous air temperature by using an iterative computation based on the Surface Energy Balance Algorithm for Land(SEBAL), which is used to analyze the spatio-temporal air temperature variance. The results show that the root mean square error(RMSE) of the LST downscaled from the binary linear model is 1.30℃ compared to the synchronous MODIS LST, and on this basis the estimated air temperature has the RMSE of 1.78℃. The spatial and temporal distribution of air temperature variance at each geographical location from 06:30 to 18:30 can be accurately determined, and indicates that the high temperature gradually increases and expands from the city center. For the spatial distribution, the air temperature and the defined scorching temperature proportion index increase from northern to middle, to southern part of Jiangsu, and are slightly lower in the eastern area near the Yellow Sea. In terms of temporal characteristics, the percentage of area with air temperature above 37℃ in each city increase with time after 10:30 and reach the peak value at 14:30 or 15:30. Then, they decrease gradually, and the rising and falling trends become smaller from the southern cities to the northern regions. Moreover, there is a distinct positive relationship between the percentage of area above 37℃ and the population density. The above results show that the spatio-temporal distributions of heat waves and their influencing factors can be determined by combining multiple sources of remotely sensed image data.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41305071 and 41275089)the National Basic Research Program of China (Grant No. 2012CB955604)"100 Talents Program" of the Chinese Academy of Sciences
文摘Variations in surface air temperature and precipitation are closely associated because of their thermodynamic relations. The climate shift in the late 1970s and associated changes in precipitation over East Asia have been well reported. However, how the covariability of surface air temperature and precipitation responds to the climate shift is not yet well understood. We used the observed mean(Tmean), daily maximum(Tmax), and minimum(Tmin) surface air temperatures and precipitation during the period of 1953–2000 to explore this issue. Results show that the covariability between Tmean and precipitation experienced remarkable changes over certain areas of East Asia after the climate shift with evident seasonal dependencies. In winter, after the climate shift significantly negative correlations occupied more areas over Mongolia and China. By contrast, in summer after the climate shift significantly negative correlations which existed over almost entire East Asia during the pre-shift period were mostly weakened with the exception of enhanced correlations over some small isolated areas. Changes in the covariability of Tmax and precipitation showed a similar spatial pattern to that of the Tmean, whereas the Tmin-precipitation covariability did not. In winter, after the climate shift positive correlations between Tmin and precipitation over southern China were largely weakened, while the areas with significantly negative correlations increased over Mongolia. In summer, changes in Tmin-precipitation covariability appeared to be a negative-positive-negative pattern from south to north over East Asia, with positive changes occurring in the Yangtze-Huai River valley and Korea and negative changes occurring over South China and Japan, and northern part of East Asia.
基金supported by the National Basic Research Program of China (Grant No. 2010CB950502)the National Natural Science Foundation of China (Grant Nos. 41376019, 41023002, and 41376039)+1 种基金Joint Center for Global Change Studies (Grant No. 105019)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA05110302 and XDA11010304)
文摘This study assesses the historical climate trends of surface air temperature(SAT), their spatial distributions, and the hindcast skills for SAT during 1901– 2000 from 24 Coupled Model Intercomparison Project Phase 5(CMIP5) models. For the global averaged SAT, most of the models(17/24) effectively captured the increasing trends(0.64°C/century for the ensemble mean) as the observed values(- 0.6°C/century) during the period of 1901–2000, particularly during a rapid warming period of 1970–2000 with the small model spread. In addition, most of the models(22/24) showed high hindcast skills(the correlation coefficient, R 〉 0.8). For the spatial pattern of SAT, the models better simulated the relatively larger warming at the middle-to-high latitudes in the Northern Hemisphere than that in the Southern Hemisphere and the greater warming on the land than that in the ocean between 40°S and 40°N. The simulations underestimated the warming along some ocean boundaries but overestimated warming in the Arctic Ocean. Most of the coupled models were able to reproduce the large-scale features of SAT trends in most regions excluding Antarctica, some parts of the Pacific Ocean, the North Atlantic Ocean near Greenland, the southwestern Indian Ocean, and the Arctic Ocean. The outgoing longwave radiation(OLR) and incoming shortwave radiation(ISR) at the top of the atmosphere(TOA) and the downward longwave(LW) radiation and sensible heat flux at the surface had positive contributions to the increasing trends in most of the models.
基金This research was jointly sponsored by the National 11th"Five-Year Plan"of Key Technology R & D Program of Ministry of Science and Technology (Grant No.2006BAC01B030203)the National Natural Science Foundation of Chin (40372131).
文摘The temporal and spatial variations of surface latent heat flux(SLHF)and diagnostic air temperature at 2m before and after the M_S5.7 earthquake occurring on November 26,2005 in the area between Ruichang City and Jiujiang City,Jiangxi Province are summarized in this paper.It is found that before the earthquake significant SLHF anomalies and air temperature anomalies occurred in the epicentral area and its vicinity.The air temperature anomalies appeared from the 2nd to the 13th of November,2005 and were concentrated at the epicentral area and in its southern part.Then two days later,that is,from the 4th to the 15th of November 2005,significant SLHF anomalies occurred in the epicentral area and to its northern area where many lakes are distributed along the active faults.During the anomalous period,the SLHF and air temperature at 2m exceeded the sum of average daily value over 26 years and 1.5 times of its mean square deviation.Both anomalies had maintained for 12 days with a peculiar distribution related to the tectonic active zone.It is considered that both of air temperature anomalies and SLHF anomalies are correlated to the movement of thermal flux from underground prior to earthquake.SLHF anomalies occurred over wide regions covered with abundant water,whereas air temperature anomalies occurred over land.
基金financially supported by the National Natural Science Foundation of China (Nos.41305086 and 41275049)supported by China postdoctoral funding under the grant 2012M511545supported by U.S. National Science Foundation’s Independent Research and Development fund
文摘In this paper, the International Comprehensive Ocean and Atmosphere Data Set(ICOADS) is utilized to investigate the horizontal distribution of sea fog occurrence frequency over the Northern Atlantic as well as the meteorological and oceanic conditions for sea fog formation. Sea fog over the Northern Atlantic mainly occurs over middle and high latitudes. Sea fog occurrence frequency over the western region of the Northern Atlantic is higher than that over the eastern region. The season for sea fog occurrence over the Northern Atlantic is generally from April to August. When sea fogs occur, the prevailing wind direction in the study area is from southerly to southwesterly and the favorable wind speed is around 8 m s-1. It is most favorable for the formation of sea fogs when sea surface temperature(SST) is 5℃ to 15℃. When SST is higher than 25℃, it is difficult for the air to get saturated, and there is almost no report of sea fog. When sea fogs form, the difference between sea surface temperature and air temperature is mainly-1 to 3℃, and the difference of 0℃ to 2℃ is the most favorable conditions for fog formation. There are two types of sea fogs prevailing in this region: advection cooling fog and advection evaporating fog.
基金Supported by the National Natural Science Foundation of China under projects (Nos.40730530,40675016,40706056)
文摘The oceanic warm pool (OWP) defined by sea surface temperature (SST) is known as the "heat reservoir" in the ocean. The warmest portion in the ocean mirrors the fact that the wettest region with the largest accumulation of water vapor (WV) in the atmosphere, termed atmospheric wet pool (AWP), should be identified because of the well-known Clausius-Clapeyron relationship between SST and WV. In this study, we used 14-year simultaneous observations of WV and SST from January 1988 to December 2001 to define the AWP and investigate its coupling and co-variations with the OWE The joint examination of the area variations, centroid locations, and zonal migrations of the AWP and OWP lead to a number of interesting findings. The results hopefully can contribute to our understanding of the air-sea interaction in general and characterization of E1 Nifio/La Nifia events in particular.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 40631005 and 40620130113)International Partnership Project of the Chinese Academy of Sciences
文摘The self-calibrating Palmer Drought Severity Index (PDSI) is calculated using newly updated ground observations of monthly surface air temperature (SAT) and precipitation in China. The co-variabilities of PDSI and SAT are examined for summer for the period 1961-2004. The results show that there exist decadal climate co-variabilities and strong nonlinear interactions between SAT and soil moisture in many regions of China. Some of the co-variabilities can be linked to global warming. In summer,sig-nificant decadal co-variabilities from cool-wet to warm-dry conditions are found in the east region of Northwest China,North China,and Northeast China. An important finding is that in the west region of Northwest China and Southeast China,pronounced decadal co-variabilities take place from warm-dry to cool-wet conditions. Because significant warming was observed over most areas of the global land surface during the past 20-30 years,the shift to cool-wet conditions is a unique phenomenon which may deserve much scientific attention. The nonlinear interactions between SAT and soil moisture may partly account for the observed decadal co-variabilities. It is shown that anomalies of SAT will greatly affect the climatic co-variabilities,and changes of SAT may bring notable influence on the PDSI in China. These results provide observational evidence for increasing risks of decadal drought and wet-ness as anthropogenic global warming progresses.
基金supported by the National Natural Science Foundation of China(Grant No.51776011)
文摘To investigate the role of a single shield on steady temperature measurement using therrnocouples in hot air flow, a methodology for solving convection, conduction, and radiation in one single model is provided. In order to compare with the experimental results, a cylindrical computational domain is established, which is the same size with the hot calibration wind-tannel. In the computational domain, two kinds of thermocouples, the bare-bead and the single-shielded thermocouples, are simulated respectively. Surface temperature distribution and the tempera- ture measurement bias of the two typical thermocouples are compared. The simulation results indicate that: 1) The existence of the shield reduces bead surface heat flux and changes the direction of wires inner heat conduction in a colder surrounding; 2) The existence of the shield reduces the temperature measurement bias both by improving bead surface temperature and by reducing surface temperature gradient; 3) The shield effectively reduces the effect of the ambient temperature on the temperature measurement bias; 4) The shield effectively reduces the influence of airflow velocity on the temperature measurement bias.