The surface nanocrystalline microstructures of 7A04 aluminium alloy was obtained by means of circulation rolling plastic deformation(CRPD), the grain refinement behavior and the hardness variation were examined. X-ray...The surface nanocrystalline microstructures of 7A04 aluminium alloy was obtained by means of circulation rolling plastic deformation(CRPD), the grain refinement behavior and the hardness variation were examined. X-ray diffraction(XRD) and transmission electron microscopy(TEM) were applied to characterize the microstracture of the surface layer. The experimental evidences show that, after the CRPD treatment, the mean grain size in the surface layer is about 50 nm. The microhardness of the nanostructured surface layers is enhanced significantly after CRPD compared with that of the matrix, which can be attributed primarily to the grain refinement. The microhardness at the top surface can reach about HV0.05335, while the value of the matrix is HV0.05160 or so. The surface hardening effect is obtained obviously. Besides, the thermal stability of nanocrystalline layer was investigated. The results of the XRD analysis and the microhardness measurement show that the nanocrystalline layer has better thermal-stability than the matrix. And the DSC measurement shows that the synthesis of nanostructured surface layer has influence on the phase transformation of 7A04 aluminum alloy.展开更多
文摘The surface nanocrystalline microstructures of 7A04 aluminium alloy was obtained by means of circulation rolling plastic deformation(CRPD), the grain refinement behavior and the hardness variation were examined. X-ray diffraction(XRD) and transmission electron microscopy(TEM) were applied to characterize the microstracture of the surface layer. The experimental evidences show that, after the CRPD treatment, the mean grain size in the surface layer is about 50 nm. The microhardness of the nanostructured surface layers is enhanced significantly after CRPD compared with that of the matrix, which can be attributed primarily to the grain refinement. The microhardness at the top surface can reach about HV0.05335, while the value of the matrix is HV0.05160 or so. The surface hardening effect is obtained obviously. Besides, the thermal stability of nanocrystalline layer was investigated. The results of the XRD analysis and the microhardness measurement show that the nanocrystalline layer has better thermal-stability than the matrix. And the DSC measurement shows that the synthesis of nanostructured surface layer has influence on the phase transformation of 7A04 aluminum alloy.