In some of the coalfields in India, coal seams are only developed but no extraction of pillars is possible due to the presence of surface or sub-surface structures and also non-availability of stowing materials which ...In some of the coalfields in India, coal seams are only developed but no extraction of pillars is possible due to the presence of surface or sub-surface structures and also non-availability of stowing materials which leads to huge amounts of coal being locked-up underground. Spontaneous heating and fire, accumulation of poisonous gases, severe stability issues leading to unsafe workings and environmental hazards are the major problems associated with the developed coal pillars. So, there is a pressing need for a technology for the mining industry to extract the huge amount of coal locked-up under different constraints. In this study, the locked-up coal is proposed to be extracted by artificially strengthening the rib pillars. The detailed comparative study is carried out to know the increase of extraction percentage of locked-up coal by strengthening the rib pillars with FRP. Extraction methodology is designed and studied through numerical modelling for its stability analysis to evaluate its suitability of application in underground.展开更多
By varying concentration of PEG1000 as a structure-directing agent,mesoporous alumina with excellent textural properties was synthesized.The prepared mesoporous alumina displays high thermal stability,as shown by its ...By varying concentration of PEG1000 as a structure-directing agent,mesoporous alumina with excellent textural properties was synthesized.The prepared mesoporous alumina displays high thermal stability,as shown by its textural properties at different calcination temperatures of 600-850 °C.Characterization by SEM and TEM revealed that the added PEG surfactant induced the formation of petal-like alumina.XRD results clarified that all samples were amorphous and their peaks were around the peaks of γ-alumina.N_2 adsorption-desorption analysis showed that the prepared mesoporous alumina,if with PEG1000 in hydrolysis of aluminum isopropoxide,had excellent textural properties with large specific surface area,high pore volume and suitable pore size.The petal-like structure existing in the alumina samples improved their textural parameters,and the role and influential mechanism of PEG1000 were analyzed.展开更多
Tailoring tire pore structure and surface chemistry of graphene-based laminates is essentially important for their applications as separation membranes. Usually, pure graphene oxide (GO) and completely reduced GO (...Tailoring tire pore structure and surface chemistry of graphene-based laminates is essentially important for their applications as separation membranes. Usually, pure graphene oxide (GO) and completely reduced GO (rGO) membranes suffer florn low water permeance because of the lack of pristine graphitic sp2 domains and very small interlayer spacing, respectively. In this work, we studied the influence of reduction degree on the structure and separation pertornrance of rGO membranes, tt was found that weak reduction retains the good dispersion and hydrophilicity of GO nanosheets. More importantly, it increases the number of pristine graphitic sp2 domains in rGO nanosheets while keeping the large interlayer spacing of the GO membranes in most regions at the same time. The resultant mernbranes show a high water permeance of 56.3 L m^-2 h^ -1 bar^ -1, which is about 4 times and over 10^4 times larger tban those of the GO and completely reduced rGO membranes, respectively, and high rejection over 95700 for various dyes. Furthermore, they show better structure stability and more superior separation perfor- mance than GO membranes in acid and alkali environments.展开更多
基金a part of the 12th Five Year Plan Project(No.ESC 0105),acronymed as‘‘De Coal Art”
文摘In some of the coalfields in India, coal seams are only developed but no extraction of pillars is possible due to the presence of surface or sub-surface structures and also non-availability of stowing materials which leads to huge amounts of coal being locked-up underground. Spontaneous heating and fire, accumulation of poisonous gases, severe stability issues leading to unsafe workings and environmental hazards are the major problems associated with the developed coal pillars. So, there is a pressing need for a technology for the mining industry to extract the huge amount of coal locked-up under different constraints. In this study, the locked-up coal is proposed to be extracted by artificially strengthening the rib pillars. The detailed comparative study is carried out to know the increase of extraction percentage of locked-up coal by strengthening the rib pillars with FRP. Extraction methodology is designed and studied through numerical modelling for its stability analysis to evaluate its suitability of application in underground.
基金Supported by the National Basic Research Program of China(Y419012198)the National Natural Science Foundation of China(No.91534125)
文摘By varying concentration of PEG1000 as a structure-directing agent,mesoporous alumina with excellent textural properties was synthesized.The prepared mesoporous alumina displays high thermal stability,as shown by its textural properties at different calcination temperatures of 600-850 °C.Characterization by SEM and TEM revealed that the added PEG surfactant induced the formation of petal-like alumina.XRD results clarified that all samples were amorphous and their peaks were around the peaks of γ-alumina.N_2 adsorption-desorption analysis showed that the prepared mesoporous alumina,if with PEG1000 in hydrolysis of aluminum isopropoxide,had excellent textural properties with large specific surface area,high pore volume and suitable pore size.The petal-like structure existing in the alumina samples improved their textural parameters,and the role and influential mechanism of PEG1000 were analyzed.
基金supported by the National Key Research and Development Program of China(2016YFA0200101)the National Natural Science Foundation of China(51325205,51290273,and51521091)Chinese Academy of Sciences(KGZD-EW-303-1,KGZDEW-T06,174321KYSB20160011,and XDPB06)
文摘Tailoring tire pore structure and surface chemistry of graphene-based laminates is essentially important for their applications as separation membranes. Usually, pure graphene oxide (GO) and completely reduced GO (rGO) membranes suffer florn low water permeance because of the lack of pristine graphitic sp2 domains and very small interlayer spacing, respectively. In this work, we studied the influence of reduction degree on the structure and separation pertornrance of rGO membranes, tt was found that weak reduction retains the good dispersion and hydrophilicity of GO nanosheets. More importantly, it increases the number of pristine graphitic sp2 domains in rGO nanosheets while keeping the large interlayer spacing of the GO membranes in most regions at the same time. The resultant mernbranes show a high water permeance of 56.3 L m^-2 h^ -1 bar^ -1, which is about 4 times and over 10^4 times larger tban those of the GO and completely reduced rGO membranes, respectively, and high rejection over 95700 for various dyes. Furthermore, they show better structure stability and more superior separation perfor- mance than GO membranes in acid and alkali environments.