A CuPc/SiO2 sample is fabricated. Its morphology is characterized by atomic force microscopy, and the electron states are investigated by X-ray photoelectron spectroscopy. In order to investigate these spectra in deta...A CuPc/SiO2 sample is fabricated. Its morphology is characterized by atomic force microscopy, and the electron states are investigated by X-ray photoelectron spectroscopy. In order to investigate these spectra in detail, all of these spectra are normalized to the height of the most intense peak,and each component is fitted with a single Gaussian function. Analysis shows that the O element has great bearing on the electron states and that SiO2 layers produced by spurting technology are better than those produced by oxidation technology.展开更多
In order to study the relationship between the triggering current, deuterium pressure and the excess heat, a series of experiments were made in a D/Pd gas-loading system. By comparing the system constants (k = AT//kP...In order to study the relationship between the triggering current, deuterium pressure and the excess heat, a series of experiments were made in a D/Pd gas-loading system. By comparing the system constants (k = AT//kP) in both nitrogen and deuterium atmosphere we found an optimum current (8 A) and a deuterium pressure (9 x 104 Pa) in which the system could release a maximum excess power (more than 80 W). The reproducibility was 16/16 and the excess energy released in the longest experiment was about 300 MJ within 40 days, which was corresponding to 104 eV for each palladium atom. Analysis of the palladium surface with a SEM (scanning electron microscopy) and an EDS (energy dispersive spectrometer) revealed that some new surface topographical feature with concentrations of unexpected elements (such as Ag, Sn, Pb and Ca) appeared after the current triggering. The results implied that the excess heat might come from a nuclear transmutation.展开更多
Corrosion behavior of AZ91 magnesium alloy under NaCl particle deposition condition was investigated by gravimetric method and surface analysis technique.It was found that the mass gain increased rapidly at the beginn...Corrosion behavior of AZ91 magnesium alloy under NaCl particle deposition condition was investigated by gravimetric method and surface analysis technique.It was found that the mass gain increased rapidly at the beginning of exposure and then slowly with time.The corrosion morphologies were observed and the results showed that NaCl deposition resulted in the occurrence of localized corrosion.The composition of corrosion product was analyzed using X-ray photo electron spectroscopy.It was suggested that the corrosion product was a mixture of oxide and hydroxide of magnesium and aluminum.展开更多
By using PAO-10 as the base oil, the tribological behavior of 11 additives under high vacuum condition was evaluated. By adopting some surface analytical instruments, such as scanning electron microscopy(SEM), energy ...By using PAO-10 as the base oil, the tribological behavior of 11 additives under high vacuum condition was evaluated. By adopting some surface analytical instruments, such as scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS), the tribological mechanisms of these additives were studied. In air, O_2 can react with metal to form metal oxide that can protect the surfaces of rubbing pair during the tribological tests. According to the theory of the competitive adsorption, the function of some active elements is weakened. In a vacuum environment, the additives contributed more to the lubrication performance. The sulfur-containing additives could react with Fe to produce Fe Sx and "M—C" bonds("M" represents metal). They both had contributions to the lubrication. As for the phosphorus-containing additives, they only generated the phosphates during the tests. When the sulfur and phosphorus-containing additives were applied, the generated phosphates and Fe Sx had the primary contribution to the lubrication performance during the tests.展开更多
The influence of Zr content on corrosion behaviors of the Ni61.5Nb 38.5xZrx(x=1,3,5,7,9 at.%) bulk metallic glasses(BMGs) in 1 M HCl aqueous solution was investigated by potentiodynamic polarization measurements and X...The influence of Zr content on corrosion behaviors of the Ni61.5Nb 38.5xZrx(x=1,3,5,7,9 at.%) bulk metallic glasses(BMGs) in 1 M HCl aqueous solution was investigated by potentiodynamic polarization measurements and X-ray photo-electron spectroscopy(XPS).It was found that these BMG alloys possess superior corrosion resistance,that is,with large passive region of about 1.5 V and low passive current density(as low as 0.05 Am-2 for Ni61.5Nb31.5Zr7).XPS analysis indicates that the high corrosion resistance is attributed to the formation of Nb-and Zr-enriched surface films formed in the aggressive acid solution.The Zr substitution for Nb effectively reduces the Ni content,particularly the metallic state Ni content in the surface films,which depresses the electrical conduction of the surface films and reduces the passive current density,thus leading to the enhancement of the corrosion resistance of these Ni-Nb-Zr BMGs.These alloys may potentially be useful for engineering applications.展开更多
A self-assembled 1-dodecanethiol film assisted with the preferential adhesion of polydopamine was prepared on the non-etching 304 stainless steel surfaces by a simple dip-coating method.The formation and surface struc...A self-assembled 1-dodecanethiol film assisted with the preferential adhesion of polydopamine was prepared on the non-etching 304 stainless steel surfaces by a simple dip-coating method.The formation and surface structure of the film were characterized by water contact angle measurement,atomic force microscopy(AFM),and X-ray photoelectron spectroscopy(XPS).The corrosion behavior of the complex films was evaluated by Tafel polarization curve and electrochemical impedance spectroscopy(EIS).The excellent corrosion resistance property could be attributed to the compact hybrid film structure and superior seawater stability for modified 304 stainless steel surface.展开更多
文摘A CuPc/SiO2 sample is fabricated. Its morphology is characterized by atomic force microscopy, and the electron states are investigated by X-ray photoelectron spectroscopy. In order to investigate these spectra in detail, all of these spectra are normalized to the height of the most intense peak,and each component is fitted with a single Gaussian function. Analysis shows that the O element has great bearing on the electron states and that SiO2 layers produced by spurting technology are better than those produced by oxidation technology.
文摘In order to study the relationship between the triggering current, deuterium pressure and the excess heat, a series of experiments were made in a D/Pd gas-loading system. By comparing the system constants (k = AT//kP) in both nitrogen and deuterium atmosphere we found an optimum current (8 A) and a deuterium pressure (9 x 104 Pa) in which the system could release a maximum excess power (more than 80 W). The reproducibility was 16/16 and the excess energy released in the longest experiment was about 300 MJ within 40 days, which was corresponding to 104 eV for each palladium atom. Analysis of the palladium surface with a SEM (scanning electron microscopy) and an EDS (energy dispersive spectrometer) revealed that some new surface topographical feature with concentrations of unexpected elements (such as Ag, Sn, Pb and Ca) appeared after the current triggering. The results implied that the excess heat might come from a nuclear transmutation.
基金Projects(50671005,50971093)supported by the National Natural Science Foundation of ChinaProject(2007CB613705)supported by the National Basic Research Program of China
文摘Corrosion behavior of AZ91 magnesium alloy under NaCl particle deposition condition was investigated by gravimetric method and surface analysis technique.It was found that the mass gain increased rapidly at the beginning of exposure and then slowly with time.The corrosion morphologies were observed and the results showed that NaCl deposition resulted in the occurrence of localized corrosion.The composition of corrosion product was analyzed using X-ray photo electron spectroscopy.It was suggested that the corrosion product was a mixture of oxide and hydroxide of magnesium and aluminum.
基金Financial support from the SINOPEC Research Program(No.ST13164-19]) is gratefully acknowledged
文摘By using PAO-10 as the base oil, the tribological behavior of 11 additives under high vacuum condition was evaluated. By adopting some surface analytical instruments, such as scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS), the tribological mechanisms of these additives were studied. In air, O_2 can react with metal to form metal oxide that can protect the surfaces of rubbing pair during the tribological tests. According to the theory of the competitive adsorption, the function of some active elements is weakened. In a vacuum environment, the additives contributed more to the lubrication performance. The sulfur-containing additives could react with Fe to produce Fe Sx and "M—C" bonds("M" represents metal). They both had contributions to the lubrication. As for the phosphorus-containing additives, they only generated the phosphates during the tests. When the sulfur and phosphorus-containing additives were applied, the generated phosphates and Fe Sx had the primary contribution to the lubrication performance during the tests.
基金supported by the National Natural Science Foundation of China(Grant Nos.50825402 and 50731005)the National Basic Research Program of China(Grant No.2011CB606301)
文摘The influence of Zr content on corrosion behaviors of the Ni61.5Nb 38.5xZrx(x=1,3,5,7,9 at.%) bulk metallic glasses(BMGs) in 1 M HCl aqueous solution was investigated by potentiodynamic polarization measurements and X-ray photo-electron spectroscopy(XPS).It was found that these BMG alloys possess superior corrosion resistance,that is,with large passive region of about 1.5 V and low passive current density(as low as 0.05 Am-2 for Ni61.5Nb31.5Zr7).XPS analysis indicates that the high corrosion resistance is attributed to the formation of Nb-and Zr-enriched surface films formed in the aggressive acid solution.The Zr substitution for Nb effectively reduces the Ni content,particularly the metallic state Ni content in the surface films,which depresses the electrical conduction of the surface films and reduces the passive current density,thus leading to the enhancement of the corrosion resistance of these Ni-Nb-Zr BMGs.These alloys may potentially be useful for engineering applications.
基金supported by the National Natural Science Foundation of China (Grant No. 51072188)the Natural Science Foundation of Shandong Province (Grant No. Y2008B46)
文摘A self-assembled 1-dodecanethiol film assisted with the preferential adhesion of polydopamine was prepared on the non-etching 304 stainless steel surfaces by a simple dip-coating method.The formation and surface structure of the film were characterized by water contact angle measurement,atomic force microscopy(AFM),and X-ray photoelectron spectroscopy(XPS).The corrosion behavior of the complex films was evaluated by Tafel polarization curve and electrochemical impedance spectroscopy(EIS).The excellent corrosion resistance property could be attributed to the compact hybrid film structure and superior seawater stability for modified 304 stainless steel surface.