Enhancement of uorescent radiation is of great importance for applications including biological imaging,high-sensitivity detectors,and integrated light sources.Strong electromagnetic elds can be created around metalli...Enhancement of uorescent radiation is of great importance for applications including biological imaging,high-sensitivity detectors,and integrated light sources.Strong electromagnetic elds can be created around metallic nanoparticles or in gap of nanostructures,where the local state density of radiating mode is then dramatically enhanced.While enhanced uorescent emission has been demonstrated in many metallic nanoparticles and nanoparticle pairs,simultaneous mediation of absorption and emission processes of uorescent emitters remains challenging in metallic nanostructures.Here,we investigate uorescent emission mediated by metal-dielectric-metal fishnet metasurface,in which localized surface plasmon(LSP)and magnetic plasmon polaritons(MPPs)modes are coupled with absorption and emission processes,respectively.For absorption process,coupling of the LSP mode enables spatially-selective excitation of the uorescent emitters by rotating the polarization of the pump laser beam.In addition,the polarization-dependent MPP mode enables manipulation of both polarization and wavelength of the uorescent emission by introducing a rectangular fishnet structure.All the experimental observations are further corroborated by nite-difference time-domain simulations.The structure reported here has great potential for application to color light-emitting devices and nanoscale integrated light sources.展开更多
To contribute to the understanding of Eu(Ⅲ)interaction properties on hydrous alumina particles in the absence and presence of fulvic acid(FA),the complexation properties of Eu(Ⅲ)with hydrous alumina,FA and FA-alumin...To contribute to the understanding of Eu(Ⅲ)interaction properties on hydrous alumina particles in the absence and presence of fulvic acid(FA),the complexation properties of Eu(Ⅲ)with hydrous alumina,FA and FA-alumina hybrids are studied by batch and time-resolved laser fluorescence spectroscopy(TRLFS)techniques.The continuous increase in the fluorescence lifetime of Eu-alumina and Eu-FA with increasing pH indicates that the complexation is accompanied by decreasing number of hydration water in the first coordination sphere of Eu(Ⅲ).Eu(Ⅲ)is adsorbed onto alumina particles as outer-sphere surface complexes of≡(Al-O)-Eu·(OH)·7H_2O and≡(Al-O)-Eu·6H_2O at low pH values,and as inner-sphere surface complexes as≡(Al-O)_2-Eu^+·4H_2O at high pH.In FA solution,Eu(Ⅲ)forms complexes with FA as(COO)_2Eu^+(H_2O)_x and the hydration water number in the first coordination sphere decreases with pH increasing.The formation of≡COO-Eu-(O-Al≡)·4H_2O is observed on FA-alumina hybrids,suggesting the formation of strong inner-sphere surface complexes in the presence of FA.The surface complexes are also characterized by their emission spectra[the ratio of emission intensities of^5D_0→~7F_1(λ=594nm)and^5D_0→~7F_2(λ=619nm)transitions]and their fluorescence lifetime.The findings is important to understand the contribution of FA in the complexation properties of Eu(Ⅲ)on FA-alumina hybrids that the clarification of the environmental behavior of humic substances is necessary to understand fully the behavior of Eu(Ⅲ),or its analogue trivalent lanthanide and actinide ions in natural environment.展开更多
基金supported by the National Nature Science Foundation of China(No.11674303 and No.11574293)the USTC Center for Micro and Nanoscale Research and Fabrication
文摘Enhancement of uorescent radiation is of great importance for applications including biological imaging,high-sensitivity detectors,and integrated light sources.Strong electromagnetic elds can be created around metallic nanoparticles or in gap of nanostructures,where the local state density of radiating mode is then dramatically enhanced.While enhanced uorescent emission has been demonstrated in many metallic nanoparticles and nanoparticle pairs,simultaneous mediation of absorption and emission processes of uorescent emitters remains challenging in metallic nanostructures.Here,we investigate uorescent emission mediated by metal-dielectric-metal fishnet metasurface,in which localized surface plasmon(LSP)and magnetic plasmon polaritons(MPPs)modes are coupled with absorption and emission processes,respectively.For absorption process,coupling of the LSP mode enables spatially-selective excitation of the uorescent emitters by rotating the polarization of the pump laser beam.In addition,the polarization-dependent MPP mode enables manipulation of both polarization and wavelength of the uorescent emission by introducing a rectangular fishnet structure.All the experimental observations are further corroborated by nite-difference time-domain simulations.The structure reported here has great potential for application to color light-emitting devices and nanoscale integrated light sources.
基金Financial supports from the National Natural Science Foundation of China(21225730,91326202 and 21577032)the Fundamental Research Funds for the Central Universities(JB2015001)+1 种基金Kunlun scholarship of Qinghai province,the priority Academic program development of Jiangsu Higher Education Institutionsthe Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions are acknowledged
文摘To contribute to the understanding of Eu(Ⅲ)interaction properties on hydrous alumina particles in the absence and presence of fulvic acid(FA),the complexation properties of Eu(Ⅲ)with hydrous alumina,FA and FA-alumina hybrids are studied by batch and time-resolved laser fluorescence spectroscopy(TRLFS)techniques.The continuous increase in the fluorescence lifetime of Eu-alumina and Eu-FA with increasing pH indicates that the complexation is accompanied by decreasing number of hydration water in the first coordination sphere of Eu(Ⅲ).Eu(Ⅲ)is adsorbed onto alumina particles as outer-sphere surface complexes of≡(Al-O)-Eu·(OH)·7H_2O and≡(Al-O)-Eu·6H_2O at low pH values,and as inner-sphere surface complexes as≡(Al-O)_2-Eu^+·4H_2O at high pH.In FA solution,Eu(Ⅲ)forms complexes with FA as(COO)_2Eu^+(H_2O)_x and the hydration water number in the first coordination sphere decreases with pH increasing.The formation of≡COO-Eu-(O-Al≡)·4H_2O is observed on FA-alumina hybrids,suggesting the formation of strong inner-sphere surface complexes in the presence of FA.The surface complexes are also characterized by their emission spectra[the ratio of emission intensities of^5D_0→~7F_1(λ=594nm)and^5D_0→~7F_2(λ=619nm)transitions]and their fluorescence lifetime.The findings is important to understand the contribution of FA in the complexation properties of Eu(Ⅲ)on FA-alumina hybrids that the clarification of the environmental behavior of humic substances is necessary to understand fully the behavior of Eu(Ⅲ),or its analogue trivalent lanthanide and actinide ions in natural environment.