Surface integrity of a new damage-tolerant titanium alloy (TC21), including surface roughness, microhardness and metallurgical structure is investigated when normal and high speed milling are used at different tool ...Surface integrity of a new damage-tolerant titanium alloy (TC21), including surface roughness, microhardness and metallurgical structure is investigated when normal and high speed milling are used at different tool wear status. Results show that good surface integrity of TC21 can be obtained in high speed milling. In addition, even in acutely worn stages, there is no so-called serious hardening layer (or white layer) according to the studies on microhardness and metallurgical structure.展开更多
High-speed milling of titanium alloys is widely used in aviation and aerospace industries for its high efficiency and good quality.In order to optimize the machining parameters in high-speed milling TB6 titanium alloy...High-speed milling of titanium alloys is widely used in aviation and aerospace industries for its high efficiency and good quality.In order to optimize the machining parameters in high-speed milling TB6 titanium alloy,experiments of high-speed milling and fatigue were conducted to investigate the effect of parameters on 3D surface topography and fatigue life.Based on the fatigue fracture,the effect mechanism of surface topography on the fatigue crack initiation was proposed.The experiment results show that when the milling speed ranged from 100 m/min to 140 m/min,and the feed per tooth ranged from 0.02 mm/z to 0.06 mm/z,the obtained surface roughness were within the limit(0.8 μm).Fatigue life decreased sharply with the increase of surface equivalent stress concentration factor.The average error of fatigue life between the established model and the experimental results was 6.25%.The fatigue cracks nucleated at the intersection edge of machined surface.展开更多
The effect of concentration of hydrogen peroxide (H2O2) on the surface properties of Ni-Cr alloys was studied. Surface roughness and surface morphology of Ni-Cr alloys were evaluated by surface profiler and scanning...The effect of concentration of hydrogen peroxide (H2O2) on the surface properties of Ni-Cr alloys was studied. Surface roughness and surface morphology of Ni-Cr alloys were evaluated by surface profiler and scanning electron microscopy after being immersed in different concentrations of H2O2 for 112 h. Surface corrosion products of Ni-Cr alloys were analyzed by photoelectron spectrograph after being immersed in 0% and 30% H2O2. The order of increasing surface roughness of Ni-Cr alloys after being immersed in different concentrations of H2O2 was 0〈3.6%〈10%〈30%. As the concentration of hydrogen peroxide increased, the surface roughness of Ni-Cr alloys increased and the surface morphology showed different degrees of corrosion. According to the XPS results, the corrosion products formed on the outmost surface layer of the studied samples are Ni(OH)2 and BeO.展开更多
Modeling of rough surfaces with given roughness parameters is studied,where surfaces with Gaussian height distribution and exponential auto-correlation function(ACF) are concerned.A large number of micro topography sa...Modeling of rough surfaces with given roughness parameters is studied,where surfaces with Gaussian height distribution and exponential auto-correlation function(ACF) are concerned.A large number of micro topography samples are randomly generated first using the rough surface simulation method with FFT.Then roughness parameters of the simulated roughness profiles are calculated according to parameter definition,and the relationship between roughness parameters and statistical distribution parameters is investigated.The effects of high-pass filtering with different cut-off lengths on the relationship are analyzed.Subsequently,computing formulae of roughness parameters based on standard deviation and correlation length are constructed with mathematical regression method.The constructed formulae are tested with measured data of actual topographies,and the influences of auto-correlation variations at different lag lengths on the change of roughness parameter are discussed.The constructed computing formulae provide an approach to active modeling of rough surfaces with given roughness parameters.展开更多
Surface roughness is an important factor that affects the wetting of molten metal on ceramics.The effect of surface roughness of the alumina substrate on the contact angle,contact diameter,drop height and surface tens...Surface roughness is an important factor that affects the wetting of molten metal on ceramics.The effect of surface roughness of the alumina substrate on the contact angle,contact diameter,drop height and surface tension of molten lead was investigated in the temperature range of 923-1123 K.The microstructure of the lead/substrate interface was observed by SEM.The surface free energy of alumina substrates was calculated by the geometrical average method.When the surface roughness of the substrate increased from 0.092 to 2.23μm,the surface free energy increased gradually,ranging from 13.356 to 39.998 mJ/m^(2).The contact diameter of lead droplets decreased from 9.111 to 7.19 mm.The lead drop height increased from 3.41 to 3.85 mm.The contact angle increased from 113.05°to 137.15°.Moreover,the surface depression of the alumina substrate was filled with lead,and no obvious change was observed.The results demonstrated that the wetting of lead drop on alumina substrates was consistent with the Wenzel state.展开更多
Chrome steels are used in bearings since they possess high strength and wear resistance.However,when those parts are in service,failure happens due to sliding friction before the lifetime.To improve the durability of ...Chrome steels are used in bearings since they possess high strength and wear resistance.However,when those parts are in service,failure happens due to sliding friction before the lifetime.To improve the durability of the American Iron and Steel Institute(AISI)52100 chromium steel,in this work,the effect of laser surface texturing(LST)was analyzed.With the different patterns of circle and ellipse comparing with the untextured samples,the wear behavior was investigated using the pin-on-disc tribometer.The lubricant used for wear analysis is semisolid lithium grease National Lubricating Grease Institute lubricant(SKF NLGI-3).Sliding wear analysis was conducted at different loads of 10 N,30 N and 50 N for the sliding speed of 750 r/min and 1400 r/min.The wear morphology was analyzed using a scanning electron microscope(SEM).The roughness of the samples was found using a white light interferometer.The effect of different patterns like circle and ellipse,alter the friction and wear properties of chromium alloy was observed compared with the untextured samples.LST shows considerable reduction in friction and wear for ellipsoidal pattern compared with the circular pattern because of wear debris and lubricant getting trapped.展开更多
This paper aims to establish a 3D evaluation method for cutting surface topography of C/C composites. The cutting surface is measured by Talyscan 150, using 3D non-contact measurement. By evaluating 2D and 3D roughnes...This paper aims to establish a 3D evaluation method for cutting surface topography of C/C composites. The cutting surface is measured by Talyscan 150, using 3D non-contact measurement. By evaluating 2D and 3D roughness of C/C composite and Duralumin, the 2D evaluation method of the cutting surface topography of C/C composite loses a lot of information, and the characteristics of the surface topography of C/C composite can be comprehensively and authentically evaluated only by the 3D evaluation method. Furthermore, 3D amplitude and spatial parameters are adopted to evaluate the surface and the results show that: the topography of the C/C composite is anisotropy and there are no obvious feeding textures but abrupt peaks and valleys on surface of the C/C composite, which indicates that the machining mecha- nism is different from that of the metal. In conclusion, The C/C composite surface is evaluated using a 3D evaluation method, the roughness error is small, and the unique topography characteristics earl be au- thentically evaluated.展开更多
In this paper, the effect of of flank wear polycrystalline cubic boron nitride (PCBN) tools on residual stresses, white layer and roughness of machined workpiece surfaces is studied. Experimental results indicate th...In this paper, the effect of of flank wear polycrystalline cubic boron nitride (PCBN) tools on residual stresses, white layer and roughness of machined workpiece surfaces is studied. Experimental results indicate that with the increase of the tool wear, the surface of the machined workpiece tends to generate tensile residual stresses, and white layer becomes clearly thicker and uneven on the workpiece surface. The effect of the flank wear on the surface roughness is less within some range of flank wear value. The results show that it is possible to produce ideal surface integrality levels by controlling the tool flank wear.展开更多
The generation process of 3D surface topography in ultra-precision turning is analyzed, as the result of superimposing between actual roughness surface,waviness surface and geometrical form texture surface. From the v...The generation process of 3D surface topography in ultra-precision turning is analyzed, as the result of superimposing between actual roughness surface,waviness surface and geometrical form texture surface. From the viewpoints of machine technical system and manufacturing process,factors influencing on roughness surface, waviness surface and geometrical form texture surface in ultra-precision turning are discussed further.The 3D topography of ideal roughness surface and actual surface affected by cutting vibration are simulated respectively.展开更多
The predictive model of surface roughness of the spiral bevel gear (SBG) tooth based on the least square support vector machine (LSSVM) was proposed.A nonlinear LSSVM model with radial basis function (RBF) kernel was ...The predictive model of surface roughness of the spiral bevel gear (SBG) tooth based on the least square support vector machine (LSSVM) was proposed.A nonlinear LSSVM model with radial basis function (RBF) kernel was presented and then the experimental setup of PECF system was established.The Taguchi method was introduced to assess the effect of finishing parameters on the gear tooth surface roughness,and the training data was also obtained through experiments.The comparison between the predicted values and the experimental values under the same conditions was carried out.The results show that the predicted values are found to be approximately consistent with the experimental values.The mean absolute percent error (MAPE) is 2.43% for the surface roughness and 2.61% for the applied voltage.展开更多
Porous and dense TiNi alloys were successfully fabricated by powder metallurgy(P/M) method, and to further improve their surface biocompatibility, surface modification techniques including grind using silicon-carbide(...Porous and dense TiNi alloys were successfully fabricated by powder metallurgy(P/M) method, and to further improve their surface biocompatibility, surface modification techniques including grind using silicon-carbide(SiC) paper, acid etching and alkali treatment were employed to produce either irregularly rough surface or micro-porous surface roughness. X-ray diffractometry(XRD), scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDX) attached to SEM were used to characterize surface structure and the Ca-P coatings. Effects of the above surface treatments on the surface morphology, apatite forming ability were systematically investigated. Results indicate that all the above surface treatments increase the apatite forming ability of TiNi alloys in varying degrees when soaked in simulated body fluid(SBF). More apatite coatings formed on TiNi samples sintered at 1050℃ and 1100℃ due to their high porosity and pure TiNi phase that is beneficial to heterogeneous nucleation. Furthermore, more uniform apatite was fabricated on the sample sintered from the mixture of Ni and Ti powders.展开更多
Ti Ni shape memory alloys(SMAs) have been normally used as the competent elements in large part of the industries due to outstanding properties, such as super elasticity and shape memory effects. However, traditiona...Ti Ni shape memory alloys(SMAs) have been normally used as the competent elements in large part of the industries due to outstanding properties, such as super elasticity and shape memory effects. However, traditional machining of SMAs is quite complex due to these properties. Hence, the wire electric discharge machining(WEDM) characteristics of Ti Ni SMA was studied. The experiments were planned as per L27 orthogonal array to minimize the experiments, each experiment was performed under different conditions of pulse duration, pulse off time, servo voltage, flushing pressure and wire speed. A multi-response optimization method using Taguchi design with utility concept has been proposed for simultaneous optimization. The analysis of means(ANOM) and analysis of variance(ANOVA) on signal to noise(S/N) ratio were performed for determining the optimal parameter levels. Taguchi analysis reveals that a combination of 1 μs pulse duration, 3.8 μs pulse off time, 40 V servo voltage, 1.8×105 Pa flushing pressure and 8 m/min wire speed is beneficial for simultaneously maximizing the material removal rate(MRR) and minimizing the surface roughness. The optimization results of WEDM of Ti Ni SMA also indicate that pulse duration significantly affects the material removal rate and surface roughness. The discharged craters, micro cracks and recast layer were observed on the machined surface at large pulse duration.展开更多
In recent years, high precision geometric shape, surface roughness, and cost reduction are required for large glass component molding processes. In this research, the polishing process of stainless steel molding dies ...In recent years, high precision geometric shape, surface roughness, and cost reduction are required for large glass component molding processes. In this research, the polishing process of stainless steel molding dies used to form thin glass components is investigated. The surface roughness of the polished stainless steel molding die surface is below Rz = 200 nm (P-V) at 15 h polishing with 0.5 % alumina polishing liquid. In the case of polishing process with only the weight of molding die and a polishing pressure of 0.5 kPa, polishing times are approximately 60 h and 20 h, respectively. Final surface roughness polished stainless steel molding die surface with pressure of 0.5 kPa is Rz = 7 nm (P-V), rms -- 1.6 nm and Ra = 1.4 nm. In a thin glass component manufacturing method, "slumping method", surface roughness before glass forming is rms = 0.7 nm and Ra = 0.6 nm, and after is rms = 0.7 nm and Ra = 0.6 nm. Therefore, there were no observable changes their surface roughness.展开更多
Many leading experts agree on the importance of monitoring the "concrete skin" as the most loaded area affected by the external environment. Surfacing, concrete mixture composition and curing are of great importance...Many leading experts agree on the importance of monitoring the "concrete skin" as the most loaded area affected by the external environment. Surfacing, concrete mixture composition and curing are of great importance for the concrete surface resistance. The paper introduces an experimental program focused on the monitoring of de-icing salts resistance, depending on surface roughness. Quantitative evaluation of the concrete surface was performed by using confocal laser scanning microscopy, which is the new generation of optical systems that are able to make all measurements in 3D resolution. These measurements are supplemented by results of mechanical and absorption tests.展开更多
To realize full automation in machining process, Computer Numerically Controlled (CNC) machine tools have been implemented during the past decades. The CNC machine tools require less operator input, provide greater ...To realize full automation in machining process, Computer Numerically Controlled (CNC) machine tools have been implemented during the past decades. The CNC machine tools require less operator input, provide greater improvements in productivity, and increase the quality of the machined part. End milling is the most common metal removal operation encountered. It is widely used to mate with other part in die, aerospace, automotive, and machinery design as well as in manufacturing industries. Surface roughness is an important measure of the technological quality of a product and a factor that greatly influences manufacturing cost. The quality of the surface plays a very important role in the performance of milling as a good-quality milled surface significantly improves fatigue strength, corrosion resistance, or creep life. Consequently, the desired surface roughness value is usually specified for an individual part, and specific processes are selected in order to achieve the specified finish. Purpose of the study is to develop a technique to predict a surface roughness of the part to be machined according to technological parameters. Such technique could be achieved by making mathematical model of machining. In this study as machining process the milling process is chosen, especially for end milling operation. Additionally to the study, one of the key factors, which differ from similar studies, is that as surface parameters the 2D, 3D surface parameters are used. In this study, all the surface parameters are expressed as 2D, 3D parameters. The 2D, 3D surface parameters give more precise figure of the surface; therefore it is possible to evaluate the surface parameters more precisely according to technological parameters. The result of the study, mathematical model of end-milling is achieved and qualitative analysis is maintained. Achieved model could help technologists to understand more completely the process of forming surface roughness.展开更多
The mechanism of ultrasonic vibration honing Nd-Fe-B has been briefly elaborated after the introduction of the strategic significance of processing Nd-Fe-B. Based on the formation principle of Scanning Electrtmic Micr...The mechanism of ultrasonic vibration honing Nd-Fe-B has been briefly elaborated after the introduction of the strategic significance of processing Nd-Fe-B. Based on the formation principle of Scanning Electrtmic Microscope (SEM), and at the examination with the aid of SEM to the ultrasonic vibration honing Nd-Fe-B material's superficial microscopic topography, the paper discusses the new processing nechanism according to the SEM examination picture. The research indicates that as a result of supersonic high frequency vibration, the path of the abrasion extends at the same time, and the supersonic cavitation effect forms the intense shock-wave, knpacting Nd-Fe-B material's intemal surface, providing the supersonic energy for the superticial abrasive dust's dimination, which directly explain that the honing processing efficiency is enhanced, and the processing surface roughness is high.展开更多
Liquid metals(LM) such as eutectic gallium-indium and gallium-indium-tin are important functional liquid-state metal materials with many unique properties, which have attracted wide attentions especially from soft rob...Liquid metals(LM) such as eutectic gallium-indium and gallium-indium-tin are important functional liquid-state metal materials with many unique properties, which have attracted wide attentions especially from soft robot area. Recently the amoeba-like transformations of LM on the graphite surface are discovered, which present a promising future for the design and assemble of self-fueled actuators with dendritically deformable body. It appears that the surface tension of the LM can be significantly reduced when it contacts graphite surface in alkaline solution. Clearly, the specific surface should play a vital role in inducing these intriguing behaviors, which is valuable and inspiring in soft robot design. However, the information regarding varied materials functions underlying these behaviors remains unknown. To explore the generalized effects of surface materials in those intriguing behavior, several materials including glass, graphite, nickel and copper oxides(CuO) were comparatively investigated as substrate surfaces.Important results were obtained that only LM amoeba transformations were observed on graphite and CuO surfaces. In order to identify the proper surface condition for LM transformation, the intrinsic properties of substrate surfaces, such as the surface charge and roughness, as well as the specific interaction with LM like wetting behavior and mutual locomotion etc., were characterized. The integrated results revealed that LM droplet appears more likely to deform on surfaces with higher positive surface charge density, higher roughness and less bubble generation on them. In addition, another surface material,CuOx, is identified to own similar ability to graphite, which is valuable in achieving amoeba-like transformation. Moreover, this study offers a fundamental understanding of the surface properties in realizing LM amoeba transformations, which would shed light on packing and structure design of liquid metal-based soft device within multi-material system.展开更多
Multiple-energy aluminium (AI+) implantation into 4H-SiC (0001) epilayer and activation anneal with a graphite encapsnlation layer were investigated in this paper. Measurements showed that the implanted Ak+ box ...Multiple-energy aluminium (AI+) implantation into 4H-SiC (0001) epilayer and activation anneal with a graphite encapsnlation layer were investigated in this paper. Measurements showed that the implanted Ak+ box doping profile was formed and a high ion activation ratio of 78% was achieved by 40 rain annealing at 1600℃ using a horizontal chemical vapor deposition (CVD) reactor. The step bunching effect associated with the high temper:lture post implantation activation annealing (PIA) process was dramatically suppressed by using the graphite encapsulation layer. And a flat and smooth surface with a small average surface roughness (RMS) value of around 1.16 nm was achieved for the implanted 4H-SiC after the PIA process. It was demonstrated that this surface protection technique is a quite effective process for 4H-SiC power devices fabrication.展开更多
基金Supported by the National Natural Science Foundation of China(50975141)the National Scienceand Technology Major Project(2010ZX04012-042)the Aeronautical Science Foundation(2010352005)~~
文摘Surface integrity of a new damage-tolerant titanium alloy (TC21), including surface roughness, microhardness and metallurgical structure is investigated when normal and high speed milling are used at different tool wear status. Results show that good surface integrity of TC21 can be obtained in high speed milling. In addition, even in acutely worn stages, there is no so-called serious hardening layer (or white layer) according to the studies on microhardness and metallurgical structure.
基金Projects(50975237,51005184) supported by the National Natural Science Foundation of China
文摘High-speed milling of titanium alloys is widely used in aviation and aerospace industries for its high efficiency and good quality.In order to optimize the machining parameters in high-speed milling TB6 titanium alloy,experiments of high-speed milling and fatigue were conducted to investigate the effect of parameters on 3D surface topography and fatigue life.Based on the fatigue fracture,the effect mechanism of surface topography on the fatigue crack initiation was proposed.The experiment results show that when the milling speed ranged from 100 m/min to 140 m/min,and the feed per tooth ranged from 0.02 mm/z to 0.06 mm/z,the obtained surface roughness were within the limit(0.8 μm).Fatigue life decreased sharply with the increase of surface equivalent stress concentration factor.The average error of fatigue life between the established model and the experimental results was 6.25%.The fatigue cracks nucleated at the intersection edge of machined surface.
基金Projects(13ZR1427700,13ZR1427900)supported by the Natural Science Foundation of Shanghai,ChinaProject(51304136)supported by the National Natural Science Foundation of ChinaProjects(Slgl4049,Slgl4050)supported by the Shanghai Education Development Foundation"Selection and Training the Excellent Young College Teacher"Project,China
文摘The effect of concentration of hydrogen peroxide (H2O2) on the surface properties of Ni-Cr alloys was studied. Surface roughness and surface morphology of Ni-Cr alloys were evaluated by surface profiler and scanning electron microscopy after being immersed in different concentrations of H2O2 for 112 h. Surface corrosion products of Ni-Cr alloys were analyzed by photoelectron spectrograph after being immersed in 0% and 30% H2O2. The order of increasing surface roughness of Ni-Cr alloys after being immersed in different concentrations of H2O2 was 0〈3.6%〈10%〈30%. As the concentration of hydrogen peroxide increased, the surface roughness of Ni-Cr alloys increased and the surface morphology showed different degrees of corrosion. According to the XPS results, the corrosion products formed on the outmost surface layer of the studied samples are Ni(OH)2 and BeO.
基金Projects(51535012,U1604255)supported by the National Natural Science Foundation of ChinaProject(2016JC2001)supported by the Key Research and Development Project of Hunan Province,China
文摘Modeling of rough surfaces with given roughness parameters is studied,where surfaces with Gaussian height distribution and exponential auto-correlation function(ACF) are concerned.A large number of micro topography samples are randomly generated first using the rough surface simulation method with FFT.Then roughness parameters of the simulated roughness profiles are calculated according to parameter definition,and the relationship between roughness parameters and statistical distribution parameters is investigated.The effects of high-pass filtering with different cut-off lengths on the relationship are analyzed.Subsequently,computing formulae of roughness parameters based on standard deviation and correlation length are constructed with mathematical regression method.The constructed formulae are tested with measured data of actual topographies,and the influences of auto-correlation variations at different lag lengths on the change of roughness parameter are discussed.The constructed computing formulae provide an approach to active modeling of rough surfaces with given roughness parameters.
基金financial supports from the National Natural Science Foundation of China(Nos.51974022,U1738101)Fundamental Research Funds for the Central Universities,China(No.FRF-MP-20-17)。
文摘Surface roughness is an important factor that affects the wetting of molten metal on ceramics.The effect of surface roughness of the alumina substrate on the contact angle,contact diameter,drop height and surface tension of molten lead was investigated in the temperature range of 923-1123 K.The microstructure of the lead/substrate interface was observed by SEM.The surface free energy of alumina substrates was calculated by the geometrical average method.When the surface roughness of the substrate increased from 0.092 to 2.23μm,the surface free energy increased gradually,ranging from 13.356 to 39.998 mJ/m^(2).The contact diameter of lead droplets decreased from 9.111 to 7.19 mm.The lead drop height increased from 3.41 to 3.85 mm.The contact angle increased from 113.05°to 137.15°.Moreover,the surface depression of the alumina substrate was filled with lead,and no obvious change was observed.The results demonstrated that the wetting of lead drop on alumina substrates was consistent with the Wenzel state.
文摘Chrome steels are used in bearings since they possess high strength and wear resistance.However,when those parts are in service,failure happens due to sliding friction before the lifetime.To improve the durability of the American Iron and Steel Institute(AISI)52100 chromium steel,in this work,the effect of laser surface texturing(LST)was analyzed.With the different patterns of circle and ellipse comparing with the untextured samples,the wear behavior was investigated using the pin-on-disc tribometer.The lubricant used for wear analysis is semisolid lithium grease National Lubricating Grease Institute lubricant(SKF NLGI-3).Sliding wear analysis was conducted at different loads of 10 N,30 N and 50 N for the sliding speed of 750 r/min and 1400 r/min.The wear morphology was analyzed using a scanning electron microscope(SEM).The roughness of the samples was found using a white light interferometer.The effect of different patterns like circle and ellipse,alter the friction and wear properties of chromium alloy was observed compared with the untextured samples.LST shows considerable reduction in friction and wear for ellipsoidal pattern compared with the circular pattern because of wear debris and lubricant getting trapped.
基金Supported by the National Natural Science Foundation of China (No. 50875036)
文摘This paper aims to establish a 3D evaluation method for cutting surface topography of C/C composites. The cutting surface is measured by Talyscan 150, using 3D non-contact measurement. By evaluating 2D and 3D roughness of C/C composite and Duralumin, the 2D evaluation method of the cutting surface topography of C/C composite loses a lot of information, and the characteristics of the surface topography of C/C composite can be comprehensively and authentically evaluated only by the 3D evaluation method. Furthermore, 3D amplitude and spatial parameters are adopted to evaluate the surface and the results show that: the topography of the C/C composite is anisotropy and there are no obvious feeding textures but abrupt peaks and valleys on surface of the C/C composite, which indicates that the machining mecha- nism is different from that of the metal. In conclusion, The C/C composite surface is evaluated using a 3D evaluation method, the roughness error is small, and the unique topography characteristics earl be au- thentically evaluated.
基金Supported by the National Natural Science Foundation of China(No.50875068),and the National High Technology Research and Development Programme of China(No.2009AA044302).
文摘In this paper, the effect of of flank wear polycrystalline cubic boron nitride (PCBN) tools on residual stresses, white layer and roughness of machined workpiece surfaces is studied. Experimental results indicate that with the increase of the tool wear, the surface of the machined workpiece tends to generate tensile residual stresses, and white layer becomes clearly thicker and uneven on the workpiece surface. The effect of the flank wear on the surface roughness is less within some range of flank wear value. The results show that it is possible to produce ideal surface integrality levels by controlling the tool flank wear.
文摘The generation process of 3D surface topography in ultra-precision turning is analyzed, as the result of superimposing between actual roughness surface,waviness surface and geometrical form texture surface. From the viewpoints of machine technical system and manufacturing process,factors influencing on roughness surface, waviness surface and geometrical form texture surface in ultra-precision turning are discussed further.The 3D topography of ideal roughness surface and actual surface affected by cutting vibration are simulated respectively.
基金Project(90923022) supported by the National Natural Science Foundation of ChinaProject(2009220022) supported by Liaoning Science and Technology Foundation,China
文摘The predictive model of surface roughness of the spiral bevel gear (SBG) tooth based on the least square support vector machine (LSSVM) was proposed.A nonlinear LSSVM model with radial basis function (RBF) kernel was presented and then the experimental setup of PECF system was established.The Taguchi method was introduced to assess the effect of finishing parameters on the gear tooth surface roughness,and the training data was also obtained through experiments.The comparison between the predicted values and the experimental values under the same conditions was carried out.The results show that the predicted values are found to be approximately consistent with the experimental values.The mean absolute percent error (MAPE) is 2.43% for the surface roughness and 2.61% for the applied voltage.
基金Project(51274247) supported by the National Natural Science Foundation of ChinaProject(2014zzts177) support by the Fundamental Research Funds for the Central Universities,China
文摘Porous and dense TiNi alloys were successfully fabricated by powder metallurgy(P/M) method, and to further improve their surface biocompatibility, surface modification techniques including grind using silicon-carbide(SiC) paper, acid etching and alkali treatment were employed to produce either irregularly rough surface or micro-porous surface roughness. X-ray diffractometry(XRD), scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDX) attached to SEM were used to characterize surface structure and the Ca-P coatings. Effects of the above surface treatments on the surface morphology, apatite forming ability were systematically investigated. Results indicate that all the above surface treatments increase the apatite forming ability of TiNi alloys in varying degrees when soaked in simulated body fluid(SBF). More apatite coatings formed on TiNi samples sintered at 1050℃ and 1100℃ due to their high porosity and pure TiNi phase that is beneficial to heterogeneous nucleation. Furthermore, more uniform apatite was fabricated on the sample sintered from the mixture of Ni and Ti powders.
文摘Ti Ni shape memory alloys(SMAs) have been normally used as the competent elements in large part of the industries due to outstanding properties, such as super elasticity and shape memory effects. However, traditional machining of SMAs is quite complex due to these properties. Hence, the wire electric discharge machining(WEDM) characteristics of Ti Ni SMA was studied. The experiments were planned as per L27 orthogonal array to minimize the experiments, each experiment was performed under different conditions of pulse duration, pulse off time, servo voltage, flushing pressure and wire speed. A multi-response optimization method using Taguchi design with utility concept has been proposed for simultaneous optimization. The analysis of means(ANOM) and analysis of variance(ANOVA) on signal to noise(S/N) ratio were performed for determining the optimal parameter levels. Taguchi analysis reveals that a combination of 1 μs pulse duration, 3.8 μs pulse off time, 40 V servo voltage, 1.8×105 Pa flushing pressure and 8 m/min wire speed is beneficial for simultaneously maximizing the material removal rate(MRR) and minimizing the surface roughness. The optimization results of WEDM of Ti Ni SMA also indicate that pulse duration significantly affects the material removal rate and surface roughness. The discharged craters, micro cracks and recast layer were observed on the machined surface at large pulse duration.
文摘In recent years, high precision geometric shape, surface roughness, and cost reduction are required for large glass component molding processes. In this research, the polishing process of stainless steel molding dies used to form thin glass components is investigated. The surface roughness of the polished stainless steel molding die surface is below Rz = 200 nm (P-V) at 15 h polishing with 0.5 % alumina polishing liquid. In the case of polishing process with only the weight of molding die and a polishing pressure of 0.5 kPa, polishing times are approximately 60 h and 20 h, respectively. Final surface roughness polished stainless steel molding die surface with pressure of 0.5 kPa is Rz = 7 nm (P-V), rms -- 1.6 nm and Ra = 1.4 nm. In a thin glass component manufacturing method, "slumping method", surface roughness before glass forming is rms = 0.7 nm and Ra = 0.6 nm, and after is rms = 0.7 nm and Ra = 0.6 nm. Therefore, there were no observable changes their surface roughness.
文摘Many leading experts agree on the importance of monitoring the "concrete skin" as the most loaded area affected by the external environment. Surfacing, concrete mixture composition and curing are of great importance for the concrete surface resistance. The paper introduces an experimental program focused on the monitoring of de-icing salts resistance, depending on surface roughness. Quantitative evaluation of the concrete surface was performed by using confocal laser scanning microscopy, which is the new generation of optical systems that are able to make all measurements in 3D resolution. These measurements are supplemented by results of mechanical and absorption tests.
文摘To realize full automation in machining process, Computer Numerically Controlled (CNC) machine tools have been implemented during the past decades. The CNC machine tools require less operator input, provide greater improvements in productivity, and increase the quality of the machined part. End milling is the most common metal removal operation encountered. It is widely used to mate with other part in die, aerospace, automotive, and machinery design as well as in manufacturing industries. Surface roughness is an important measure of the technological quality of a product and a factor that greatly influences manufacturing cost. The quality of the surface plays a very important role in the performance of milling as a good-quality milled surface significantly improves fatigue strength, corrosion resistance, or creep life. Consequently, the desired surface roughness value is usually specified for an individual part, and specific processes are selected in order to achieve the specified finish. Purpose of the study is to develop a technique to predict a surface roughness of the part to be machined according to technological parameters. Such technique could be achieved by making mathematical model of machining. In this study as machining process the milling process is chosen, especially for end milling operation. Additionally to the study, one of the key factors, which differ from similar studies, is that as surface parameters the 2D, 3D surface parameters are used. In this study, all the surface parameters are expressed as 2D, 3D parameters. The 2D, 3D surface parameters give more precise figure of the surface; therefore it is possible to evaluate the surface parameters more precisely according to technological parameters. The result of the study, mathematical model of end-milling is achieved and qualitative analysis is maintained. Achieved model could help technologists to understand more completely the process of forming surface roughness.
基金supported by The Natural Science Foundation of China(50975265)The Natural Science Foundation of Shanxi Province of China(2007011071)Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi(20080205ZX)
文摘The mechanism of ultrasonic vibration honing Nd-Fe-B has been briefly elaborated after the introduction of the strategic significance of processing Nd-Fe-B. Based on the formation principle of Scanning Electrtmic Microscope (SEM), and at the examination with the aid of SEM to the ultrasonic vibration honing Nd-Fe-B material's superficial microscopic topography, the paper discusses the new processing nechanism according to the SEM examination picture. The research indicates that as a result of supersonic high frequency vibration, the path of the abrasion extends at the same time, and the supersonic cavitation effect forms the intense shock-wave, knpacting Nd-Fe-B material's intemal surface, providing the supersonic energy for the superticial abrasive dust's dimination, which directly explain that the honing processing efficiency is enhanced, and the processing surface roughness is high.
基金supported by the Dean’s Research Funding from the Chinese Academy of Sciences, Beijing Municipal Science and Technology Funding(Z151100003715002)the National Natural Science Foundation of China (61307065) and the National Key Research and Development Program of China (2016YFA0200500)
文摘Liquid metals(LM) such as eutectic gallium-indium and gallium-indium-tin are important functional liquid-state metal materials with many unique properties, which have attracted wide attentions especially from soft robot area. Recently the amoeba-like transformations of LM on the graphite surface are discovered, which present a promising future for the design and assemble of self-fueled actuators with dendritically deformable body. It appears that the surface tension of the LM can be significantly reduced when it contacts graphite surface in alkaline solution. Clearly, the specific surface should play a vital role in inducing these intriguing behaviors, which is valuable and inspiring in soft robot design. However, the information regarding varied materials functions underlying these behaviors remains unknown. To explore the generalized effects of surface materials in those intriguing behavior, several materials including glass, graphite, nickel and copper oxides(CuO) were comparatively investigated as substrate surfaces.Important results were obtained that only LM amoeba transformations were observed on graphite and CuO surfaces. In order to identify the proper surface condition for LM transformation, the intrinsic properties of substrate surfaces, such as the surface charge and roughness, as well as the specific interaction with LM like wetting behavior and mutual locomotion etc., were characterized. The integrated results revealed that LM droplet appears more likely to deform on surfaces with higher positive surface charge density, higher roughness and less bubble generation on them. In addition, another surface material,CuOx, is identified to own similar ability to graphite, which is valuable in achieving amoeba-like transformation. Moreover, this study offers a fundamental understanding of the surface properties in realizing LM amoeba transformations, which would shed light on packing and structure design of liquid metal-based soft device within multi-material system.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61006060, 61176070)
文摘Multiple-energy aluminium (AI+) implantation into 4H-SiC (0001) epilayer and activation anneal with a graphite encapsnlation layer were investigated in this paper. Measurements showed that the implanted Ak+ box doping profile was formed and a high ion activation ratio of 78% was achieved by 40 rain annealing at 1600℃ using a horizontal chemical vapor deposition (CVD) reactor. The step bunching effect associated with the high temper:lture post implantation activation annealing (PIA) process was dramatically suppressed by using the graphite encapsulation layer. And a flat and smooth surface with a small average surface roughness (RMS) value of around 1.16 nm was achieved for the implanted 4H-SiC after the PIA process. It was demonstrated that this surface protection technique is a quite effective process for 4H-SiC power devices fabrication.