annular beam tri-heterodyne confocal microscope has been proposed to improve the anti-environmental interference capability and the resolution of a eonfoeal microscope. It simultaneously detects far-, on-, and near-fo...annular beam tri-heterodyne confocal microscope has been proposed to improve the anti-environmental interference capability and the resolution of a eonfoeal microscope. It simultaneously detects far-, on-, and near-focus signals with given phase differences by dividing the measured light path of the eonfoeal microscope into three sub-paths (signals). Pair-wise real-time heterodyne subtraction of the three signals is used to improve the anti-environmental interference capability, axial resolution, and linearity; and a shaped annular beam super-resolution technique is used to improve lateral resolution. Theoretical analyses and preliminary experiments indicate that an axial resolution of about 1 nm can be achieved with a shaped annular beam tri-heterodyne confoeal microscope and its lateral resolution can be better than 0.2 um for A = 632.8 nm, the numerical aperture of the lens of the microscope is NA = 0.85, and the normalized radius e = 0.5.展开更多
To determine mirror surface finishing conditions and efficient and economical superfinishing conditions for pure titanium and titanium alloys, an abrasive film is used when superfinishing is performed under varying co...To determine mirror surface finishing conditions and efficient and economical superfinishing conditions for pure titanium and titanium alloys, an abrasive film is used when superfinishing is performed under varying conditions. These conditions include the workpiece rotation speed, the oscillation speed, the contact pressure of the roller, the hardness of the roller, and the type of abrasive film. The superfinishing device is applied to polishing a thin and long cylindrical bar. A micro-finishing film and a lapping film were used as abrasive films. A1203 grains or SiC grains were used as abrasives. The surface roughness of a polished workpiece was measured using a stylus-type surface-roughness measuring instrument. As a result, the conditions to improve the polishing surface efficiently include high values for the workpiece rotation speed, oscillation speed and contact pressure. The roller hardness has no effect on the efficient polishing conditions. The mirror finish of a surface can be created using lapping film of 3 μm with Al2O3 grains after polishing to a steady surface roughness under the efficient polishing conditions.展开更多
Effects caused by precipitation on the measurements of three-dimensional sonic anemometer are analyzed based on a field observational experiment conducted in Maoming, Guangdong Province, China. Obvious fluctuations in...Effects caused by precipitation on the measurements of three-dimensional sonic anemometer are analyzed based on a field observational experiment conducted in Maoming, Guangdong Province, China. Obvious fluctuations induced by precipitation are observed for the outputs of sonic anemometer-derived temperature and wind velocity components. A technique of turbulence spectra and cospectra normalized in the framework of similarity theory is utilized to validate the measured variables and calculated fluxes. It is found that the sensitivity of sonic anemometer-derived temperature to precipitation is significant, compared with that of the wind velocity components. The spectra of wind velocity and cospectra of momentum flux resemble the standard universal shape with the slopes of the spectra and cospectra at the inertial subrange, following the-2/3 and-4/3 power law, respectively, even under the condition of heavy rain. Contaminated by precipitation, however, the spectra of temperature and cospectra of sensible heat flux do not exhibit a universal shape and have obvious frequency loss at the inertial subrange. From the physical structure and working principle of sonic anemometer, a possible explanation is proposed to describe this difference, which is found to be related to the variations of precipitation particles. Corrections for errors of sonic anemometer-derived temperature under precipitation is needed, which is still under exploration.展开更多
The potential energy surface of H(13) proton in base cytosine of the DNA molecules is calculated at the Caussian 98 MP2/6-311C(d,p) level. Two potential wells are found. One corresponds to the normal cytosine, whi...The potential energy surface of H(13) proton in base cytosine of the DNA molecules is calculated at the Caussian 98 MP2/6-311C(d,p) level. Two potential wells are found. One corresponds to the normal cytosine, while the other corresponds to its trans-imino tautomer. The estimated tunneling probability of the H(13) proton from one well to another well shows that the life time of the proton staying in one of these wells is about 600 yrs. It is too long to let tautomers of cytosine be in thermodynamical equilibrium in a room temperature gas phase experiment.展开更多
The planet responds thermally to the impacts of nova WZ Sagittae debris by heating and cooling. The result in the first 19 years of the nova WZ Sagittae cycle is global warming that is hemi-spherically dependent and i...The planet responds thermally to the impacts of nova WZ Sagittae debris by heating and cooling. The result in the first 19 years of the nova WZ Sagittae cycle is global warming that is hemi-spherically dependent and is detectable in South America ice core data and Antarctica surface mass balance data. Planetary thermal data are correlated in the past by calculating the debris impact times from the super outbursts times of nova WZ Sagittae. The shape of the arctic ice cap is dependent on the 220 degree path of the debris and does not exist southward between the western extension and eastern termini of nova WZ Sagittae that define the Arctic heating path. Future global heating from nova WZ Sagittae will begin in 2020-2021. The increase of 6 to 8 magnitude unusual earthquakes in recent years is the results of nova WZ Sagittae and SN 1054 debris impact. Unusual occurrences in the biosphere indicate the starting time of impacting supernova debris streams. The Antarctic sea ice distribution in November of 2016 defines the termini of maximum particle concentration impact from supernova 1006 in the southern hemisphere. The killing heat in India of the northern hemisphere is associated with the western terminus of this supernova. Novas and supernovas times of impact correlate with plague outbreaks in the western USA marking the particles in the debris streams as the cause of the disease.展开更多
Power ultrasound is finding widespread applications in assisting conventional processes yielding products of better quality at lower processing power and temperature. Transmission of ultrasound is known to be affected...Power ultrasound is finding widespread applications in assisting conventional processes yielding products of better quality at lower processing power and temperature. Transmission of ultrasound is known to be affected by the boundaries between layers of different materials or same material but in different states (solid or liquid or gas). This paper investigates the effects of ultrasound (US) on the surface of the solidified weld which has been subjected to ultrasonic vibrations of 20 kHz frequency during laser welding. Vibrations due to ultrasound normally exert a very high force which is usually hundred or thousand times the gravity. The transverse waves will also cause movement of molten material in the weld. As the surface of the weld beads were of interest and not the mechanical properties and the microstructure, investigation of bead on plate welds were found to be sufficient. High carbon steel plate was held at one end by the ultrasonic horn through which ultrasound was injected. A bead on plate weld using a CO2 laser (1 kW) was then performed along the center of the plate using three different welding speeds namely, 400, 1200 and 2000 mm per minute. The ultrasonic powers selected were 3 W and 6 W respectively for each welding speed as higher acoustical power was causing ejection of molten metal from the pool during welding. 3D surface measurements and analysis were then made on a section of length 20 mm using a Talysurf machine. The results show that the surface of the weld was affected to different extent depending on the positions being considered in the weld. Some regions were similar to the reference weld whereas some specific regions were heavily disrupted with deep valleys followed by high peak/s. This shows that US vibration of weld pools, even at very small acoustical power, is a more complex problem than other similar processes such as casting because of the very small volume of molten metal involved.展开更多
A description and results of tests of a new small-scale gage for direct measurement of skin friction force are presented in the paper.The gage design provides separated measurement of longitudinal and transversal comp...A description and results of tests of a new small-scale gage for direct measurement of skin friction force are presented in the paper.The gage design provides separated measurement of longitudinal and transversal component of friction force.Application of this scheme provides high sensitivity and necessary high-frequency response of the gage.The tests of the gage were carried out in a blow down wind tunnel at Mach numbers of 2 and 4 within the range of Reynolds numbers Rex from 0.8 to 5 million and in the hot-shot wind tunnel at Mach number 6 and Reynolds numbers Rex=2.5-10 million.The measurements of skin friction were carried out on a flat plate and on a ramp beyond the shock wave.Simultaneously with the direct measurement of friction in the blow down wind tunnel,the measurements of profiles of average velocities and mass flow rate pulsations were realised.Analysis of measurement errors has shown that the friction gage permits to measure skin friction coefficient on a flat plate with mistake not more than 10%.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 50475035), the Doctoral Program of Higher Education of China (Grant No 20050213035) and the Program for New Century Excellent Talents in University of China (Grant No NCET-05-0348).
文摘annular beam tri-heterodyne confocal microscope has been proposed to improve the anti-environmental interference capability and the resolution of a eonfoeal microscope. It simultaneously detects far-, on-, and near-focus signals with given phase differences by dividing the measured light path of the eonfoeal microscope into three sub-paths (signals). Pair-wise real-time heterodyne subtraction of the three signals is used to improve the anti-environmental interference capability, axial resolution, and linearity; and a shaped annular beam super-resolution technique is used to improve lateral resolution. Theoretical analyses and preliminary experiments indicate that an axial resolution of about 1 nm can be achieved with a shaped annular beam tri-heterodyne confoeal microscope and its lateral resolution can be better than 0.2 um for A = 632.8 nm, the numerical aperture of the lens of the microscope is NA = 0.85, and the normalized radius e = 0.5.
基金work supported by the Second Stage of Brain Korea 21 Projects of Korea
文摘To determine mirror surface finishing conditions and efficient and economical superfinishing conditions for pure titanium and titanium alloys, an abrasive film is used when superfinishing is performed under varying conditions. These conditions include the workpiece rotation speed, the oscillation speed, the contact pressure of the roller, the hardness of the roller, and the type of abrasive film. The superfinishing device is applied to polishing a thin and long cylindrical bar. A micro-finishing film and a lapping film were used as abrasive films. A1203 grains or SiC grains were used as abrasives. The surface roughness of a polished workpiece was measured using a stylus-type surface-roughness measuring instrument. As a result, the conditions to improve the polishing surface efficiently include high values for the workpiece rotation speed, oscillation speed and contact pressure. The roller hardness has no effect on the efficient polishing conditions. The mirror finish of a surface can be created using lapping film of 3 μm with Al2O3 grains after polishing to a steady surface roughness under the efficient polishing conditions.
基金supported by the National Key Basic Research Program of China (Grant Nos. 2014CB953903,2015CB953904)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA 11010403)the CAS/SAFEA International Partnership Program for Creative Research Teams
文摘Effects caused by precipitation on the measurements of three-dimensional sonic anemometer are analyzed based on a field observational experiment conducted in Maoming, Guangdong Province, China. Obvious fluctuations induced by precipitation are observed for the outputs of sonic anemometer-derived temperature and wind velocity components. A technique of turbulence spectra and cospectra normalized in the framework of similarity theory is utilized to validate the measured variables and calculated fluxes. It is found that the sensitivity of sonic anemometer-derived temperature to precipitation is significant, compared with that of the wind velocity components. The spectra of wind velocity and cospectra of momentum flux resemble the standard universal shape with the slopes of the spectra and cospectra at the inertial subrange, following the-2/3 and-4/3 power law, respectively, even under the condition of heavy rain. Contaminated by precipitation, however, the spectra of temperature and cospectra of sensible heat flux do not exhibit a universal shape and have obvious frequency loss at the inertial subrange. From the physical structure and working principle of sonic anemometer, a possible explanation is proposed to describe this difference, which is found to be related to the variations of precipitation particles. Corrections for errors of sonic anemometer-derived temperature under precipitation is needed, which is still under exploration.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10305001 and 10475002 with the calculations supported by the High Performance Computing Center of China (Beijing)
文摘The potential energy surface of H(13) proton in base cytosine of the DNA molecules is calculated at the Caussian 98 MP2/6-311C(d,p) level. Two potential wells are found. One corresponds to the normal cytosine, while the other corresponds to its trans-imino tautomer. The estimated tunneling probability of the H(13) proton from one well to another well shows that the life time of the proton staying in one of these wells is about 600 yrs. It is too long to let tautomers of cytosine be in thermodynamical equilibrium in a room temperature gas phase experiment.
文摘The planet responds thermally to the impacts of nova WZ Sagittae debris by heating and cooling. The result in the first 19 years of the nova WZ Sagittae cycle is global warming that is hemi-spherically dependent and is detectable in South America ice core data and Antarctica surface mass balance data. Planetary thermal data are correlated in the past by calculating the debris impact times from the super outbursts times of nova WZ Sagittae. The shape of the arctic ice cap is dependent on the 220 degree path of the debris and does not exist southward between the western extension and eastern termini of nova WZ Sagittae that define the Arctic heating path. Future global heating from nova WZ Sagittae will begin in 2020-2021. The increase of 6 to 8 magnitude unusual earthquakes in recent years is the results of nova WZ Sagittae and SN 1054 debris impact. Unusual occurrences in the biosphere indicate the starting time of impacting supernova debris streams. The Antarctic sea ice distribution in November of 2016 defines the termini of maximum particle concentration impact from supernova 1006 in the southern hemisphere. The killing heat in India of the northern hemisphere is associated with the western terminus of this supernova. Novas and supernovas times of impact correlate with plague outbreaks in the western USA marking the particles in the debris streams as the cause of the disease.
文摘Power ultrasound is finding widespread applications in assisting conventional processes yielding products of better quality at lower processing power and temperature. Transmission of ultrasound is known to be affected by the boundaries between layers of different materials or same material but in different states (solid or liquid or gas). This paper investigates the effects of ultrasound (US) on the surface of the solidified weld which has been subjected to ultrasonic vibrations of 20 kHz frequency during laser welding. Vibrations due to ultrasound normally exert a very high force which is usually hundred or thousand times the gravity. The transverse waves will also cause movement of molten material in the weld. As the surface of the weld beads were of interest and not the mechanical properties and the microstructure, investigation of bead on plate welds were found to be sufficient. High carbon steel plate was held at one end by the ultrasonic horn through which ultrasound was injected. A bead on plate weld using a CO2 laser (1 kW) was then performed along the center of the plate using three different welding speeds namely, 400, 1200 and 2000 mm per minute. The ultrasonic powers selected were 3 W and 6 W respectively for each welding speed as higher acoustical power was causing ejection of molten metal from the pool during welding. 3D surface measurements and analysis were then made on a section of length 20 mm using a Talysurf machine. The results show that the surface of the weld was affected to different extent depending on the positions being considered in the weld. Some regions were similar to the reference weld whereas some specific regions were heavily disrupted with deep valleys followed by high peak/s. This shows that US vibration of weld pools, even at very small acoustical power, is a more complex problem than other similar processes such as casting because of the very small volume of molten metal involved.
文摘A description and results of tests of a new small-scale gage for direct measurement of skin friction force are presented in the paper.The gage design provides separated measurement of longitudinal and transversal component of friction force.Application of this scheme provides high sensitivity and necessary high-frequency response of the gage.The tests of the gage were carried out in a blow down wind tunnel at Mach numbers of 2 and 4 within the range of Reynolds numbers Rex from 0.8 to 5 million and in the hot-shot wind tunnel at Mach number 6 and Reynolds numbers Rex=2.5-10 million.The measurements of skin friction were carried out on a flat plate and on a ramp beyond the shock wave.Simultaneously with the direct measurement of friction in the blow down wind tunnel,the measurements of profiles of average velocities and mass flow rate pulsations were realised.Analysis of measurement errors has shown that the friction gage permits to measure skin friction coefficient on a flat plate with mistake not more than 10%.