采用时域有限差分(Finite Difference Time Domain FDTD)和表面边界条件对单层石墨烯的太赫兹电磁特性进行研究.首先计算了其反射和透射系数,并与解析解对比验证了该理论的正确性.接着研究了一维光子晶体表面石墨烯在太赫兹光谱范围的吸...采用时域有限差分(Finite Difference Time Domain FDTD)和表面边界条件对单层石墨烯的太赫兹电磁特性进行研究.首先计算了其反射和透射系数,并与解析解对比验证了该理论的正确性.接着研究了一维光子晶体表面石墨烯在太赫兹光谱范围的吸收.通过改变模型中石墨烯的位置,得到了一维石墨烯吸收特性与石墨烯位置的关系.结果表明:当石墨烯位于光子晶体表面时,由于石墨烯和间隔层在光子晶体表面构成了表面缺陷,从而导致光的局域化,这种局域化增强了石墨烯对太赫兹范围光的吸收.展开更多
Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary condi...Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary conditions through heat and mass are employed. The governing boundary layer equations are transformed into ordinary differential equations. Convergent series solutions of the resulting problems are derived. Emphasis has been focused on studying the effects of mixed convection, thermal radiation, magnetic field and nanoparticles on the velocity, temperature and concentration fields. Numerical values of the physical parameters involved in the problem are computed for the local Nusselt and Sherwood numbers are computed.展开更多
There is a large class of problems in the field of fluid structure interaction where higher-order boundary conditions arise for a second-order partial differential equation. Various methods are being used to tackle th...There is a large class of problems in the field of fluid structure interaction where higher-order boundary conditions arise for a second-order partial differential equation. Various methods are being used to tackle these kind of mixed boundary-value problems associated with the Laplace’s equation (or Helmholtz equation) arising in the study of waves propagating through solids or fluids. One of the widely used methods in wave structure interaction is the multipole expansion method. This expansion involves a general combination of a regular wave, a wave source, a wave dipole and a regular wave-free part. The wave-free part can be further expanded in terms of wave-free multipoles which are termed as wave-free potentials. These are singular solutions of Laplace’s equation or two-dimensional Helmholz equation. Construction of these wave-free potentials and multipoles are presented here in a systematic manner for a number of situations such as two-dimensional non-oblique and oblique waves, three dimensional waves in two-layer fluid with free surface condition with higher order partial derivative are considered. In particular, these are obtained taking into account of the effect of the presence of surface tension at the free surface and also in the presence of an ice-cover modelled as a thin elastic plate. Also for limiting case, it can be shown that the multipoles and wave-free potential functions go over to the single layer multipoles and wave-free potential.展开更多
An OGCM, LICOM2.0, was used to investigate the effects of different surface boundary conditions for sea surface salinity (SSS) on simulations of global mean salinity, SSS, and the Atlantic Meridional Overturning Cir...An OGCM, LICOM2.0, was used to investigate the effects of different surface boundary conditions for sea surface salinity (SSS) on simulations of global mean salinity, SSS, and the Atlantic Meridional Overturning Circulation (AMOC). Four numerical experiments (CTRL, Expl, Exp2 and Exp3) were designed with the same forcing data-set, CORE.v2, and different surface boundary conditions for SSS~ A new surface salinity boundary condition that consists of both virtual and real salt fluxes was adopted in the fourth experiment (Exp3). Compared with the other experiments, the new salinity boundary condition prohibited a monotonous increasing or decreasing global mean salinity trend. As a result, global salinity was approximately conserved in EXP3. In the default salinity boundary condition setting in LICOM2.0, a weak restoring salinity term plays an essential role in reducing the simulated SSS bias, tending to increase the global mean salinity. However, a strong restoring salinity term under the sea ice can reduce the global mean salinity. The authors also found that adopting simulated SSS in the virtual salt flux instead of constant reference salinity improved the simulation of AMOC, whose strength became closer to that observed.展开更多
This paper presents a review of the work on fluid/structure impact based on inviscid and imcompressible liquid and irrotational flow. The focus is on the velocity potential theory together with boundary element method...This paper presents a review of the work on fluid/structure impact based on inviscid and imcompressible liquid and irrotational flow. The focus is on the velocity potential theory together with boundary element method (BEM). Fully nonlinear boundary conditions are imposed on the unknown free surface and the wetted surface of the moving body. The review includes (1) vertical and oblique water entry of a body at constant or a prescribed varying speed, as well as free fall motion, (2) liquid droplets or column impact as well as wave impact on a body, (3) similarity solution of an expanding body. It covers two dimensional (2D), axisymmetric and three dimensional (3D) cases. Key techniques used in the numerical simulation are outlined, including mesh generation on the multivalued free surface, the stretched coordinate system for expanding domain, the auxiliary function method for decoupling the mutual dependence of the pressure and the body motion, and treatment for the jet or the thin liquid film developed during impact.展开更多
In this paper, the geometrical design for the blade's surface in an impeller or for the profile of an aircraft, is modeled from the mathematical point of view by a boundary shape control problem for the Navier-Sto...In this paper, the geometrical design for the blade's surface in an impeller or for the profile of an aircraft, is modeled from the mathematical point of view by a boundary shape control problem for the Navier-Stokes equations. The objective function is the sum of a global dissipative function and the power of the fluid. The control variables are the geometry of the boundary and the state equations are the Navier-Stokes equations. The Euler-Lagrange equations of the optimal control problem are derived, which are an elliptic boundary value system of fourth order, coupled with the Navier-Stokes equations. The authors also prove the existence of the solution of the optimal control problem, the existence of the solution of the Navier-Stokes equations with mixed boundary conditions, the weak continuity of the solution of the Navier-Stokes equations with respect to the geometry shape of the blade's surface and the existence of solutions of the equations for the Gateaux derivative of the solution of the Navier-Stokes equations with respect to the geometry of the boundary.展开更多
Soil moisture has a significant influence on water, energy, and carbon biogeochemical cycles. A numerical method for solving Richards' equation is usually used for simulating soil moisture. Selection of a lower bound...Soil moisture has a significant influence on water, energy, and carbon biogeochemical cycles. A numerical method for solving Richards' equation is usually used for simulating soil moisture. Selection of a lower boundary condition for Richards' equation will further affect the simulation results for soil moisture, water cycle, energy balance, and carbon biogeochemical processes. In this study, the soil water movement dynamic sub-model of a hydrologically based land surface model, the variable infiltration capacity (VIC) model, was modified using the finite difference method (FDM) to solve a mixed form of Richards' equation. In addition, the VIC model was coupled with a terrestrial biogeochemical model, the Carnegie Ames Stanford Approach model of carbon, nitrogen, and phosphorus (CASACNP model). The no-flux boundary (NB) and free-drainage boundary (FB) were selected to investigate their impacts on simulations of the water, energy, and soil carbon cycles based on the coupling model. The NB and FB had different influences on the water, energy, and soil carbon simulations. The water and energy simulations were more sensitive, while the soil carbon simulation was less sensitive to FB than to NB. Free-drainage boundary could result in lower soil moisture, evaporation, runoff, and heterotrophic respiration and higher surface soil temperature, sensible heat flux, and soil carbon content. The impact of the lower boundary condition on simulation would be greater with an increase in soil permeability. In the silt loam soil case, evaporation, runoff, and soil respiration of FB were nearly 169, 13%, and 1% smaller, respectively, compared to those of NB.展开更多
Gas diffusion layer(GDL) plays a great important role in proton exchange membrane fuel cell(PEMFC).Water transport mechanism in GDL is still not clear.In the present study,an ex-situ transparent setup is built to visu...Gas diffusion layer(GDL) plays a great important role in proton exchange membrane fuel cell(PEMFC).Water transport mechanism in GDL is still not clear.In the present study,an ex-situ transparent setup is built to visualize the transport phenomena and to measure the threshold pressure of water in GDL at different temperatures.It is found that the relationship between the breakthrough pressure and the temperature is nearly linear(i.e.the pressure decreases linearly with the increase of temperature).To avoid the problems faced by the continuum models,the pore network model is developed to simulate the liquid water transport through the carbon paper.A uniform pressure boundary condition is used in simulation and the results are similar to the ones obtained in the experiment.The reason is that the contact angle and surface tension coefficient of water in GDLs change accordingly with the change of temperature.展开更多
文摘采用时域有限差分(Finite Difference Time Domain FDTD)和表面边界条件对单层石墨烯的太赫兹电磁特性进行研究.首先计算了其反射和透射系数,并与解析解对比验证了该理论的正确性.接着研究了一维光子晶体表面石墨烯在太赫兹光谱范围的吸收.通过改变模型中石墨烯的位置,得到了一维石墨烯吸收特性与石墨烯位置的关系.结果表明:当石墨烯位于光子晶体表面时,由于石墨烯和间隔层在光子晶体表面构成了表面缺陷,从而导致光的局域化,这种局域化增强了石墨烯对太赫兹范围光的吸收.
文摘Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary conditions through heat and mass are employed. The governing boundary layer equations are transformed into ordinary differential equations. Convergent series solutions of the resulting problems are derived. Emphasis has been focused on studying the effects of mixed convection, thermal radiation, magnetic field and nanoparticles on the velocity, temperature and concentration fields. Numerical values of the physical parameters involved in the problem are computed for the local Nusselt and Sherwood numbers are computed.
文摘There is a large class of problems in the field of fluid structure interaction where higher-order boundary conditions arise for a second-order partial differential equation. Various methods are being used to tackle these kind of mixed boundary-value problems associated with the Laplace’s equation (or Helmholtz equation) arising in the study of waves propagating through solids or fluids. One of the widely used methods in wave structure interaction is the multipole expansion method. This expansion involves a general combination of a regular wave, a wave source, a wave dipole and a regular wave-free part. The wave-free part can be further expanded in terms of wave-free multipoles which are termed as wave-free potentials. These are singular solutions of Laplace’s equation or two-dimensional Helmholz equation. Construction of these wave-free potentials and multipoles are presented here in a systematic manner for a number of situations such as two-dimensional non-oblique and oblique waves, three dimensional waves in two-layer fluid with free surface condition with higher order partial derivative are considered. In particular, these are obtained taking into account of the effect of the presence of surface tension at the free surface and also in the presence of an ice-cover modelled as a thin elastic plate. Also for limiting case, it can be shown that the multipoles and wave-free potential functions go over to the single layer multipoles and wave-free potential.
基金partially supported by the National Basic Research Program of China[grant number 2013CB956204]the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA11010403],[grant number XDA11010304]the National Natural Science Foundation of China[grant number 41305028]
文摘An OGCM, LICOM2.0, was used to investigate the effects of different surface boundary conditions for sea surface salinity (SSS) on simulations of global mean salinity, SSS, and the Atlantic Meridional Overturning Circulation (AMOC). Four numerical experiments (CTRL, Expl, Exp2 and Exp3) were designed with the same forcing data-set, CORE.v2, and different surface boundary conditions for SSS~ A new surface salinity boundary condition that consists of both virtual and real salt fluxes was adopted in the fourth experiment (Exp3). Compared with the other experiments, the new salinity boundary condition prohibited a monotonous increasing or decreasing global mean salinity trend. As a result, global salinity was approximately conserved in EXP3. In the default salinity boundary condition setting in LICOM2.0, a weak restoring salinity term plays an essential role in reducing the simulated SSS bias, tending to increase the global mean salinity. However, a strong restoring salinity term under the sea ice can reduce the global mean salinity. The authors also found that adopting simulated SSS in the virtual salt flux instead of constant reference salinity improved the simulation of AMOC, whose strength became closer to that observed.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant Nos. 11302057, 11302056), the Fundamental Research Funds for the Central Universities (Grant No. HEUCF140115) and the Research Funds for State Key Laboratory of Ocean Engineering in Shanghai Jiao Tong University (Grant No. 1310).
文摘This paper presents a review of the work on fluid/structure impact based on inviscid and imcompressible liquid and irrotational flow. The focus is on the velocity potential theory together with boundary element method (BEM). Fully nonlinear boundary conditions are imposed on the unknown free surface and the wetted surface of the moving body. The review includes (1) vertical and oblique water entry of a body at constant or a prescribed varying speed, as well as free fall motion, (2) liquid droplets or column impact as well as wave impact on a body, (3) similarity solution of an expanding body. It covers two dimensional (2D), axisymmetric and three dimensional (3D) cases. Key techniques used in the numerical simulation are outlined, including mesh generation on the multivalued free surface, the stretched coordinate system for expanding domain, the auxiliary function method for decoupling the mutual dependence of the pressure and the body motion, and treatment for the jet or the thin liquid film developed during impact.
文摘为了研究欧姆损耗对太赫兹波段真空电子器件工作特性的影响,本文推导了2.5维全电磁粒子模拟软件UNIPIC的表面阻抗边界条件,并采用软件对不同金属材料慢波结构的同轴结构表面波振荡器进行了数值模拟研究,分析了不同金属材料慢波结构器件的输出功率与电导率的关系,模拟结果表明:金属电导率对器件的输出功率有非常大的影响,对于0.14 THz同轴表面波振荡器,铜材料和不锈钢材料慢波结构器件的输出功率分别下降13.4%和63.9%,起振时间分别延迟0.4 ns和15 ns.
基金supported by the National High-Tech Research and Development Program of China (No.2009AA01A135)the National Natural Science Foundation of China (Nos. 10926080, 10971165, 10871156)Xian Jiaotong University (No. XJJ2008033)
文摘In this paper, the geometrical design for the blade's surface in an impeller or for the profile of an aircraft, is modeled from the mathematical point of view by a boundary shape control problem for the Navier-Stokes equations. The objective function is the sum of a global dissipative function and the power of the fluid. The control variables are the geometry of the boundary and the state equations are the Navier-Stokes equations. The Euler-Lagrange equations of the optimal control problem are derived, which are an elliptic boundary value system of fourth order, coupled with the Navier-Stokes equations. The authors also prove the existence of the solution of the optimal control problem, the existence of the solution of the Navier-Stokes equations with mixed boundary conditions, the weak continuity of the solution of the Navier-Stokes equations with respect to the geometry shape of the blade's surface and the existence of solutions of the equations for the Gateaux derivative of the solution of the Navier-Stokes equations with respect to the geometry of the boundary.
基金supported by the National Science Foundation for Distinguished Young Scholars of China (No. 51309245)supported by the US Department of Energy and National Aeronautics and Space Administration
文摘Soil moisture has a significant influence on water, energy, and carbon biogeochemical cycles. A numerical method for solving Richards' equation is usually used for simulating soil moisture. Selection of a lower boundary condition for Richards' equation will further affect the simulation results for soil moisture, water cycle, energy balance, and carbon biogeochemical processes. In this study, the soil water movement dynamic sub-model of a hydrologically based land surface model, the variable infiltration capacity (VIC) model, was modified using the finite difference method (FDM) to solve a mixed form of Richards' equation. In addition, the VIC model was coupled with a terrestrial biogeochemical model, the Carnegie Ames Stanford Approach model of carbon, nitrogen, and phosphorus (CASACNP model). The no-flux boundary (NB) and free-drainage boundary (FB) were selected to investigate their impacts on simulations of the water, energy, and soil carbon cycles based on the coupling model. The NB and FB had different influences on the water, energy, and soil carbon simulations. The water and energy simulations were more sensitive, while the soil carbon simulation was less sensitive to FB than to NB. Free-drainage boundary could result in lower soil moisture, evaporation, runoff, and heterotrophic respiration and higher surface soil temperature, sensible heat flux, and soil carbon content. The impact of the lower boundary condition on simulation would be greater with an increase in soil permeability. In the silt loam soil case, evaporation, runoff, and soil respiration of FB were nearly 169, 13%, and 1% smaller, respectively, compared to those of NB.
基金supported by the National Natural Science Foundation of China (No.50976011)Fundamental Research Funds for the Central Universities of China (No. 2009JBM090)
文摘Gas diffusion layer(GDL) plays a great important role in proton exchange membrane fuel cell(PEMFC).Water transport mechanism in GDL is still not clear.In the present study,an ex-situ transparent setup is built to visualize the transport phenomena and to measure the threshold pressure of water in GDL at different temperatures.It is found that the relationship between the breakthrough pressure and the temperature is nearly linear(i.e.the pressure decreases linearly with the increase of temperature).To avoid the problems faced by the continuum models,the pore network model is developed to simulate the liquid water transport through the carbon paper.A uniform pressure boundary condition is used in simulation and the results are similar to the ones obtained in the experiment.The reason is that the contact angle and surface tension coefficient of water in GDLs change accordingly with the change of temperature.