The robust control problem for a class of underactuated mechanical systems called acrobots is addressed. The goal is to drive the acrobots away from the straight-down position and balance them at the straight-up unsta...The robust control problem for a class of underactuated mechanical systems called acrobots is addressed. The goal is to drive the acrobots away from the straight-down position and balance them at the straight-up unstable equilibrium position in the presence of parametric uncertainties and external disturbance. First, in the swing-up area, it is shown that the time derivative of energy is independent of the parameter uncertainties, but exogenous disturbance may destroy the characteristic of increase in mechanical energy. So, a swing-up controller with compensator is designed to suppress the influence of the disturbance. Then, in the attractive area, the control problem is formulated into a H~ control framework by introducing a proper error signal, and a sufficient condition of the existence of Hoo state feedback control law based on linear matrix inequality (LMI) is proposed to guarantee the quadratic stability of the control system. Finally, the simulation results show that the proposed control approach can simultaneously handle a maximum ±10% parameter perturbation and a big disturbance simultaneously.展开更多
This paper considers the problem of L2-disturbance attenuation for a class of time-delay port-controlled Hamiltonian systems. A v-dissipative inequality is established by using a proper control law and a storage funct...This paper considers the problem of L2-disturbance attenuation for a class of time-delay port-controlled Hamiltonian systems. A v-dissipative inequality is established by using a proper control law and a storage function. Then based on the Razumikhin stability theorem, a sufficient condition is proposed for the asymptotically stability of the closed-loop system. Finally, the authors investigate the case that there are time-invariant uncertainties belonging to some convex bounded polytypic domain and an L2 disturbance attenuation control law is proposed. Study of illustrative example with simulation shows that the presented method in this paper works very well in the disturbance attenuation of time-delay Hamiltonian systems.展开更多
基金Projects(61074112,60674044) supported by the National Natural Science Foundation of China
文摘The robust control problem for a class of underactuated mechanical systems called acrobots is addressed. The goal is to drive the acrobots away from the straight-down position and balance them at the straight-up unstable equilibrium position in the presence of parametric uncertainties and external disturbance. First, in the swing-up area, it is shown that the time derivative of energy is independent of the parameter uncertainties, but exogenous disturbance may destroy the characteristic of increase in mechanical energy. So, a swing-up controller with compensator is designed to suppress the influence of the disturbance. Then, in the attractive area, the control problem is formulated into a H~ control framework by introducing a proper error signal, and a sufficient condition of the existence of Hoo state feedback control law based on linear matrix inequality (LMI) is proposed to guarantee the quadratic stability of the control system. Finally, the simulation results show that the proposed control approach can simultaneously handle a maximum ±10% parameter perturbation and a big disturbance simultaneously.
基金supported by the National Natural Science Foundation of China under Grant Nos.61074068, 61004013 and 61034007the Research Fund the Doctoral Program of Chinese Higher Education under Grant No.200804220028+2 种基金China Postdoctoral Science Foundation under Grant No.20100481300the Postdoctoral Innovation Program of Shandong Province under Grant No.200902014the Natural Science Foundation of Shandong Province under Grant No.ZB2010FM013
文摘This paper considers the problem of L2-disturbance attenuation for a class of time-delay port-controlled Hamiltonian systems. A v-dissipative inequality is established by using a proper control law and a storage function. Then based on the Razumikhin stability theorem, a sufficient condition is proposed for the asymptotically stability of the closed-loop system. Finally, the authors investigate the case that there are time-invariant uncertainties belonging to some convex bounded polytypic domain and an L2 disturbance attenuation control law is proposed. Study of illustrative example with simulation shows that the presented method in this paper works very well in the disturbance attenuation of time-delay Hamiltonian systems.