This paper presents the pollen data from deep_sea sediments of station 17962 from the continental slope of the southern South China Sea. The 8 m long profile covers the last 30 000 years including the late stage of Ma...This paper presents the pollen data from deep_sea sediments of station 17962 from the continental slope of the southern South China Sea. The 8 m long profile covers the last 30 000 years including the late stage of Marine Oxygen Isotope Stage 3, the Last Glacial Maximum, the Termination and the Holocene. The pollen results reveal that lowland rainforest covered the emerged southern continental shelf of the South China Sea (Sunda Land) during the last glacial period at low sea level stand. At the same time, upper montane rainforest on the adjacent islands expanded, showing the climate was cooler than that in present day, but no dryness was indicated. The vegetation and climate experienced great fluctuations including abrupt warming and cooling at the end of the ice age. During the Holocene, expansion of mangroves and lowland rainforest, and significant diminution of pollen influx values suggests warming of the climate, rising of the sea level and the submerge of the shelf.展开更多
We developed a vegetation geo-climatic zonation incorporating the zonal concept, gradient and discriminant analysis in Wasatch Range, northern Utah, USA. Mountainous forest ecosystems were sampled and described by veg...We developed a vegetation geo-climatic zonation incorporating the zonal concept, gradient and discriminant analysis in Wasatch Range, northern Utah, USA. Mountainous forest ecosystems were sampled and described by vegetation, physiographic features and soil properties. The Snowpack Telemetry and National Weather Service Cooperative Observer Program weather station networks were used to approximate the climate of sample plots. We analysed vegetation and environmental data using clustering, ordination, classification, and ANOVA techniques to reveal environmental gradients affecting a broad vegetation pattern and discriminate these gradients. The specific objective was to assess and classify the response of the complex vegetation to those environmental factors operating at a coarse-scale climatic level. Ordination revealed the dominant role of regional, altitude-based climate in the area. Based on vegetation physiognomy, represented by five tree species, climatic data and taxonomic classification of zonal soils, we identified two vegetation geo-climatic zones:(1) a montane zone, with Rocky Mountain juniper and Douglas-fir; and(2) a subalpine zone, with Engelmann spruce and subalpine fir as climatic climax species. Aspen was excluded from the zonation due to its great ecological amplitude. We found significant differences between the zones in regional climate and landformgeomorphology/soils. Regional climate was represented by elevation, precipitation, and air and soil temperatures; and geomorphology by soil types. This coarse-scale vegetation geo-climatic zonation provides a framework for a comprehensive ecosystem survey, which is missing in the central Rocky Mountains of the United States. The vegetation-geoclimatic zonation represents a conceptual improvement on earlier classifications. This framework explicitly accounts for the influence of the physical environment on the distribution of vegetation within a complex landscape typical of the central Rocky Mountains and in mountain ranges elsewhere.展开更多
文摘This paper presents the pollen data from deep_sea sediments of station 17962 from the continental slope of the southern South China Sea. The 8 m long profile covers the last 30 000 years including the late stage of Marine Oxygen Isotope Stage 3, the Last Glacial Maximum, the Termination and the Holocene. The pollen results reveal that lowland rainforest covered the emerged southern continental shelf of the South China Sea (Sunda Land) during the last glacial period at low sea level stand. At the same time, upper montane rainforest on the adjacent islands expanded, showing the climate was cooler than that in present day, but no dryness was indicated. The vegetation and climate experienced great fluctuations including abrupt warming and cooling at the end of the ice age. During the Holocene, expansion of mangroves and lowland rainforest, and significant diminution of pollen influx values suggests warming of the climate, rising of the sea level and the submerge of the shelf.
基金supported in part by the Ecology Center, United States Department of Agriculture (USDA) Forest Service, Wasatch-Cache National Forest, Forest Supervisor’s Office, and the Utah Agricultural Experiment Station, Utah State University,USA and approved as journal paper no. 8235
文摘We developed a vegetation geo-climatic zonation incorporating the zonal concept, gradient and discriminant analysis in Wasatch Range, northern Utah, USA. Mountainous forest ecosystems were sampled and described by vegetation, physiographic features and soil properties. The Snowpack Telemetry and National Weather Service Cooperative Observer Program weather station networks were used to approximate the climate of sample plots. We analysed vegetation and environmental data using clustering, ordination, classification, and ANOVA techniques to reveal environmental gradients affecting a broad vegetation pattern and discriminate these gradients. The specific objective was to assess and classify the response of the complex vegetation to those environmental factors operating at a coarse-scale climatic level. Ordination revealed the dominant role of regional, altitude-based climate in the area. Based on vegetation physiognomy, represented by five tree species, climatic data and taxonomic classification of zonal soils, we identified two vegetation geo-climatic zones:(1) a montane zone, with Rocky Mountain juniper and Douglas-fir; and(2) a subalpine zone, with Engelmann spruce and subalpine fir as climatic climax species. Aspen was excluded from the zonation due to its great ecological amplitude. We found significant differences between the zones in regional climate and landformgeomorphology/soils. Regional climate was represented by elevation, precipitation, and air and soil temperatures; and geomorphology by soil types. This coarse-scale vegetation geo-climatic zonation provides a framework for a comprehensive ecosystem survey, which is missing in the central Rocky Mountains of the United States. The vegetation-geoclimatic zonation represents a conceptual improvement on earlier classifications. This framework explicitly accounts for the influence of the physical environment on the distribution of vegetation within a complex landscape typical of the central Rocky Mountains and in mountain ranges elsewhere.