针对分布式电动汽车中簧下质量增大,车辆平顺性和车轮接地性恶化的问题,设计了一种新型齿轮连杆式轮边动力吸振器。评估其在多连杆悬架中空间布置的可行性;考虑路面不平度与电机驱动时作用在其壳体上的反力矩,建立系统的动力学模型并推...针对分布式电动汽车中簧下质量增大,车辆平顺性和车轮接地性恶化的问题,设计了一种新型齿轮连杆式轮边动力吸振器。评估其在多连杆悬架中空间布置的可行性;考虑路面不平度与电机驱动时作用在其壳体上的反力矩,建立系统的动力学模型并推导其振动力学微分方程,利用MATLAB/Simulink建立三自由度振动模型,在新欧洲行驶循环(New European Driving Cycle,NEDC)工况下得到时域内的系统响应;结合计算结果分析动力吸振器弹簧刚度阻尼对车身加速度、车轮动载荷和电机振动的影响作用,并进行动力吸振器弹簧刚度和阻尼的优化设计;最后将该系统与传统汽车和一般轮毂电机驱动系统对比,分析其改善车辆平顺性和接地性的效果。结果表明,该新型齿轮连杆式轮边动力吸振器可以合理布置在多连杆悬架中,并可显著改善分布式驱动汽车车辆平顺性和车轮接地性。展开更多
文摘针对分布式电动汽车中簧下质量增大,车辆平顺性和车轮接地性恶化的问题,设计了一种新型齿轮连杆式轮边动力吸振器。评估其在多连杆悬架中空间布置的可行性;考虑路面不平度与电机驱动时作用在其壳体上的反力矩,建立系统的动力学模型并推导其振动力学微分方程,利用MATLAB/Simulink建立三自由度振动模型,在新欧洲行驶循环(New European Driving Cycle,NEDC)工况下得到时域内的系统响应;结合计算结果分析动力吸振器弹簧刚度阻尼对车身加速度、车轮动载荷和电机振动的影响作用,并进行动力吸振器弹簧刚度和阻尼的优化设计;最后将该系统与传统汽车和一般轮毂电机驱动系统对比,分析其改善车辆平顺性和接地性的效果。结果表明,该新型齿轮连杆式轮边动力吸振器可以合理布置在多连杆悬架中,并可显著改善分布式驱动汽车车辆平顺性和车轮接地性。