This paper studies the control of a new chaotic system which can generate 4-scroll attractors. Based on the properties of a passive system, it derives the essential conditions under which this new chaotic system could...This paper studies the control of a new chaotic system which can generate 4-scroll attractors. Based on the properties of a passive system, it derives the essential conditions under which this new chaotic system could be equivalent to a passive system and globally asymptotically stabilize at a zero equilibrium point via smooth state feedback. Simulation results and circuit experiment show that the proposed chaos control method is effective.展开更多
Permanent Magnet Synchronous Motor model can exhibit a variety of chaotic phenomena under some choices of system parameters and external input. Based on the property of passive system, the essential conditions were st...Permanent Magnet Synchronous Motor model can exhibit a variety of chaotic phenomena under some choices of system parameters and external input. Based on the property of passive system, the essential conditions were studied, by which Permanent Magnet Synchronous Motor chaotic system could be equivalent to passive system. Using Lyapunov stability theory, the convergence condition deciding the system's characters was discussed. In the convergence condition area, the equivalent passive system could be globally asymptotically stabilized by smooth state feedback.展开更多
Development of miniaturized three-dimensional(3 D)fliers with integrated functional components has important implications to a diverse range of engineering areas.Among the various active and passive miniaturized 3 D f...Development of miniaturized three-dimensional(3 D)fliers with integrated functional components has important implications to a diverse range of engineering areas.Among the various active and passive miniaturized 3 D fliers reported previously,a class of 3 D electronic fliers inspired by wind-dispersed seeds show promising potentials,owing to the lightweight and noiseless features,aside from the stable rotational fall associated with a low falling velocity.While on-demand shape-morphing capabilities are essential for those 3 D electronic fliers,the realization of such miniaturized systems remains very challenging,due to the lack of fast-response 3 D actuators that can be seamlessly integrated with 3 D electronic fliers.Here we develop a type of morphable3 D mesofliers with shape memory polymer(SMP)-based electrothermal actuators,capable of large degree of actuation deformations,with a fast response(e.g.,~1 s).Integration of functional components,including sensors,controllers,and chip batteries,enables development of intelligent 3 D mesoflier systems that can achieve the on-demand unfolding,triggered by the processing of real-time sensed information(e.g.,acceleration and humidity data).Such intelligent electronic mesofliers are capable of both the low-air-drag rising and the low-velocity falling,and thereby,can be used to measure the humidity fields in a wide 3 D space by simple hand throwing,according to our demonstrations.The developed electronic mesofliers can also be integrated with other types of physical/chemical sensors for uses in different application scenarios.展开更多
The 3-dimensional incompressible Rayleigh-Taylor instability is numerically studied through the large-eddy-simulation ( LES) approach based on the passive scalar transport model. Both the instantaneous velocity and th...The 3-dimensional incompressible Rayleigh-Taylor instability is numerically studied through the large-eddy-simulation ( LES) approach based on the passive scalar transport model. Both the instantaneous velocity and the passive scalar fields excited by sinusoidal perturbation and random perturbation are simulated. A full treatment of the whole evolution process of the instability is addressed. To verify the reliability of the LES code, the averaged turbulent energy as well as the flux of passive scalar are calculated at both the resolved scale and the subgrid scale. Our results show good agreement with the experimental and other numerical work. The LES method has proved to be an effective approach to the Rayleigh-Taylor instability.展开更多
文摘This paper studies the control of a new chaotic system which can generate 4-scroll attractors. Based on the properties of a passive system, it derives the essential conditions under which this new chaotic system could be equivalent to a passive system and globally asymptotically stabilize at a zero equilibrium point via smooth state feedback. Simulation results and circuit experiment show that the proposed chaos control method is effective.
基金Project supported by the National Natural Science Foundation of China (No. 60374013) and the Natural Science Foundation of Zhejiang Province (No. M603217), China
文摘Permanent Magnet Synchronous Motor model can exhibit a variety of chaotic phenomena under some choices of system parameters and external input. Based on the property of passive system, the essential conditions were studied, by which Permanent Magnet Synchronous Motor chaotic system could be equivalent to passive system. Using Lyapunov stability theory, the convergence condition deciding the system's characters was discussed. In the convergence condition area, the equivalent passive system could be globally asymptotically stabilized by smooth state feedback.
基金support from the National Natural Science Foundation of China(12050004 and 11921002)the Tsinghua National Laboratory for Information Science and Technology,and a grant from the Institute for Guo Qiang,Tsinghua University(2019GQG1012)+3 种基金support from the National Natural Science Foundation of China(11902178)the Natural Science Foundation of Beijing Municipality(3204043)China Postdoctoral Science Foundation(2019M650648)support from the National Natural Science Foundation of China(61904095)。
文摘Development of miniaturized three-dimensional(3 D)fliers with integrated functional components has important implications to a diverse range of engineering areas.Among the various active and passive miniaturized 3 D fliers reported previously,a class of 3 D electronic fliers inspired by wind-dispersed seeds show promising potentials,owing to the lightweight and noiseless features,aside from the stable rotational fall associated with a low falling velocity.While on-demand shape-morphing capabilities are essential for those 3 D electronic fliers,the realization of such miniaturized systems remains very challenging,due to the lack of fast-response 3 D actuators that can be seamlessly integrated with 3 D electronic fliers.Here we develop a type of morphable3 D mesofliers with shape memory polymer(SMP)-based electrothermal actuators,capable of large degree of actuation deformations,with a fast response(e.g.,~1 s).Integration of functional components,including sensors,controllers,and chip batteries,enables development of intelligent 3 D mesoflier systems that can achieve the on-demand unfolding,triggered by the processing of real-time sensed information(e.g.,acceleration and humidity data).Such intelligent electronic mesofliers are capable of both the low-air-drag rising and the low-velocity falling,and thereby,can be used to measure the humidity fields in a wide 3 D space by simple hand throwing,according to our demonstrations.The developed electronic mesofliers can also be integrated with other types of physical/chemical sensors for uses in different application scenarios.
基金We thank Dr. Z. F. Zhang and Dr. Q. Zhang for their useful discussions. This work was supported by the9th-Five-Year Climb Project of MST, the NSAF Project, the China Postdoctoral Science Foundation and CAS, and K. C. Wong Postdoctoral Research Award Fu
文摘The 3-dimensional incompressible Rayleigh-Taylor instability is numerically studied through the large-eddy-simulation ( LES) approach based on the passive scalar transport model. Both the instantaneous velocity and the passive scalar fields excited by sinusoidal perturbation and random perturbation are simulated. A full treatment of the whole evolution process of the instability is addressed. To verify the reliability of the LES code, the averaged turbulent energy as well as the flux of passive scalar are calculated at both the resolved scale and the subgrid scale. Our results show good agreement with the experimental and other numerical work. The LES method has proved to be an effective approach to the Rayleigh-Taylor instability.