非线性能量阱(Nonlinear Energy Sinks,NESs)属于被动结构控制技术,通过产生非线性回复力降低主体结构响应。该论文所研究的轨道非线性能量阱(简称轨道NES)是一种新型的NES,由轨道和附加质量组成。轨道与主体结构固定,质量块沿轨道运动...非线性能量阱(Nonlinear Energy Sinks,NESs)属于被动结构控制技术,通过产生非线性回复力降低主体结构响应。该论文所研究的轨道非线性能量阱(简称轨道NES)是一种新型的NES,由轨道和附加质量组成。轨道与主体结构固定,质量块沿轨道运动,通过改变轨道形状,可产生所需的非线性回复力。对轨道NES进行了理论分析,推导了轨道NES回复力表达式和附加轨道NES系统的运动方程。对一两自由度主体结构附加轨道NES进行了数值优化,优化后的轨道NES减振性能良好,且对主体结构刚度的变化具备较高的鲁棒性。但同时,研究发现轨道NES减振性能对输入能量大小较敏感。为改善其能量鲁棒性,又对NES阻尼进行了研究,分析其对轨道NES减振性能的影响。结果表明,当结构刚度和初始速度一定时,轨道NES阻尼存在最优值使结构减振效果最佳,即可以通过调整NES阻尼进一步改善其能量鲁棒性。展开更多
The performance-based passive control analysis of the Maxwell dampers between one 10-story and one 6-story adjacent RC frames is conducted in this work.Not only the optimal parameters but also the optimal arrangements...The performance-based passive control analysis of the Maxwell dampers between one 10-story and one 6-story adjacent RC frames is conducted in this work.Not only the optimal parameters but also the optimal arrangements of the Maxwell dampers are proposed based on the optimal target of making the total exceeding probability of the adjacent structures to be minimal.The applicability of the analytical expressions of the Maxwell damper damping parameters under different seismic performance targets are firstly examined and then the preferable damping parameters of the Maxwell dampers are proposed through the extensive parametric studies.Furthermore,the optimal arranging positions and optimal arranging numbers of the Maxwell dampers between the adjacent buildings are derived based on a large number of seismic fragility analyses,as well.The general arranging laws of the Maxwell dampers between the adjacent buildings are generated based on the discussion of the theoretical method through the simplified plane model.The optimal parameters and optimal arrangement of the Maxwell dampers presented make both the adjacent structures have preferable controlled effects under each seismic performance target which can satisfy the requirements of multi-performance seismic resistance of the modern seismic codes.展开更多
Based on the former performance capacity experiments of the magnet-friction energy dissipation devices, including the permanent magnet-friction energy dissipation device (PMF) and electromagnet-friction energy dissipa...Based on the former performance capacity experiments of the magnet-friction energy dissipation devices, including the permanent magnet-friction energy dissipation device (PMF) and electromagnet-friction energy dissipation devices (EMF), a 5-story steel frame model with spacious first story is designed and made according to a scale of 1/4. The magnet-friction energy dissipation devices can realize continuously varied controlling force, with rapid response and reverse recognition. Therefore, they overcome shortcomings usually found in energy dissipation devices whose force models are invariable. The two kinds of devices were fixed on the flexible first story of the structure model, and the shaking table tests have been carried out, respectively. In these tests, the performance of the devices and their effectiveness in structural control were confirmed. In this paper, the test results and analysis are discussed.展开更多
文摘非线性能量阱(Nonlinear Energy Sinks,NESs)属于被动结构控制技术,通过产生非线性回复力降低主体结构响应。该论文所研究的轨道非线性能量阱(简称轨道NES)是一种新型的NES,由轨道和附加质量组成。轨道与主体结构固定,质量块沿轨道运动,通过改变轨道形状,可产生所需的非线性回复力。对轨道NES进行了理论分析,推导了轨道NES回复力表达式和附加轨道NES系统的运动方程。对一两自由度主体结构附加轨道NES进行了数值优化,优化后的轨道NES减振性能良好,且对主体结构刚度的变化具备较高的鲁棒性。但同时,研究发现轨道NES减振性能对输入能量大小较敏感。为改善其能量鲁棒性,又对NES阻尼进行了研究,分析其对轨道NES减振性能的影响。结果表明,当结构刚度和初始速度一定时,轨道NES阻尼存在最优值使结构减振效果最佳,即可以通过调整NES阻尼进一步改善其能量鲁棒性。
基金Projects(51408443,51178203)supported by the National Natural Science Foundation of ChinaProject(K201511)supported by the Science Foundation of Wuhan Institute of Technology,China
文摘The performance-based passive control analysis of the Maxwell dampers between one 10-story and one 6-story adjacent RC frames is conducted in this work.Not only the optimal parameters but also the optimal arrangements of the Maxwell dampers are proposed based on the optimal target of making the total exceeding probability of the adjacent structures to be minimal.The applicability of the analytical expressions of the Maxwell damper damping parameters under different seismic performance targets are firstly examined and then the preferable damping parameters of the Maxwell dampers are proposed through the extensive parametric studies.Furthermore,the optimal arranging positions and optimal arranging numbers of the Maxwell dampers between the adjacent buildings are derived based on a large number of seismic fragility analyses,as well.The general arranging laws of the Maxwell dampers between the adjacent buildings are generated based on the discussion of the theoretical method through the simplified plane model.The optimal parameters and optimal arrangement of the Maxwell dampers presented make both the adjacent structures have preferable controlled effects under each seismic performance target which can satisfy the requirements of multi-performance seismic resistance of the modern seismic codes.
文摘Based on the former performance capacity experiments of the magnet-friction energy dissipation devices, including the permanent magnet-friction energy dissipation device (PMF) and electromagnet-friction energy dissipation devices (EMF), a 5-story steel frame model with spacious first story is designed and made according to a scale of 1/4. The magnet-friction energy dissipation devices can realize continuously varied controlling force, with rapid response and reverse recognition. Therefore, they overcome shortcomings usually found in energy dissipation devices whose force models are invariable. The two kinds of devices were fixed on the flexible first story of the structure model, and the shaking table tests have been carried out, respectively. In these tests, the performance of the devices and their effectiveness in structural control were confirmed. In this paper, the test results and analysis are discussed.