A mode II crack in single-crystal silicon was investigated experimentally using high-resolution transmission electron microscopy.Geometric phase analysis and numerical moiré method were employed to map the deform...A mode II crack in single-crystal silicon was investigated experimentally using high-resolution transmission electron microscopy.Geometric phase analysis and numerical moiré method were employed to map the deformation fields of the crack-tip area.The normal strain field maps of the crack-tip area indeed showed the deformation occurs primarily in the vicinity of the dislocations and the normal strains are near zero in the crack-tip area.The shear strain field map shows that the relatively large shear strain is in the crack-tip area.The experimental results were compared with the predictions of linear elastic fracture mechanics.The comparison shows that measured strain distribution ahead of the crack-tip agrees with the predictions of linear elastic fracture mechanics up to 1 nm from the crack-tip.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 10862002 and 11062008)the Program for New Century Excellent Talents in University (Grant No. NCET-10-0909)the Natural Science Foundation of Inner Mongolia (Grant No. 2010BS0106)
文摘A mode II crack in single-crystal silicon was investigated experimentally using high-resolution transmission electron microscopy.Geometric phase analysis and numerical moiré method were employed to map the deformation fields of the crack-tip area.The normal strain field maps of the crack-tip area indeed showed the deformation occurs primarily in the vicinity of the dislocations and the normal strains are near zero in the crack-tip area.The shear strain field map shows that the relatively large shear strain is in the crack-tip area.The experimental results were compared with the predictions of linear elastic fracture mechanics.The comparison shows that measured strain distribution ahead of the crack-tip agrees with the predictions of linear elastic fracture mechanics up to 1 nm from the crack-tip.