In order to investigate the micro-process and inner mechanism of rock failure under impact loading, the laboratory tests were carried out on an improved split Hopkinson pressure bar (SHPB) system with synchronized m...In order to investigate the micro-process and inner mechanism of rock failure under impact loading, the laboratory tests were carried out on an improved split Hopkinson pressure bar (SHPB) system with synchronized measurement devices including a high-speed camera and a dynamic strain meter. The experimental results show that the specimens were in the state of good stress equilibrium during the post failure stage even when visible cracks were forming in the specimens. Rock specimens broke into strips but still could bear the external stress and keep force balance. Meanwhile, numerical tests with particle flow code (PFC) revealed that the failure process of rocks can be described by the evolution of micro-fractures. Shear cracks emerged firstly and stopped developing when the external stress was not high enough. Tensile cracks, however, emerged when the rock specimen reached its peak strength and played an important role in controlling the ultimate failure during the post failure stage.展开更多
研究了一种G aA s层结构在[110]方向外部单轴应力下基于光致发光(PL)谱的测试方法.层结构的应力由螺旋测微器施加,可以产生平面内的压(拉)应力和应变,大小可以由胡克定律算出.随着应力的增大,观察到了谱峰明显的蓝移.在一系列的加压后,...研究了一种G aA s层结构在[110]方向外部单轴应力下基于光致发光(PL)谱的测试方法.层结构的应力由螺旋测微器施加,可以产生平面内的压(拉)应力和应变,大小可以由胡克定律算出.随着应力的增大,观察到了谱峰明显的蓝移.在一系列的加压后,在1.432 eV,有一个新的峰出现在原有的峰的肩部附近,随着压力增加,两个峰逐渐分开.同时PL峰的半峰宽随着应力增加而逐渐加大.最后,本文根据实验结果分析了静水和单轴应力的不同.展开更多
In order to investigate the physical and mechanical properties of sandstone containing fissures after exposure to high temperatures,fissures with different angles α were prefabricated in the plate sandstone samples,a...In order to investigate the physical and mechanical properties of sandstone containing fissures after exposure to high temperatures,fissures with different angles α were prefabricated in the plate sandstone samples,and the processed samples were then heated at 5 different temperatures.Indoor uniaxial compression was conducted to analyze the change rules of physical properties of sandstone after exposure to high temperature,and the deformation,strength and failure characteristics of sandstone containing fissures.The results show that,with increasing temperature,the volume of sandstone increases gradually while the quality and density decrease gradually,and the color of sandstone remains basically unchanged while the brightness increases markedly when the temperature is higher than 585 ℃;the peak strength of sandstone containing fissures first decreases then increases when the temperature is between 25℃and 400℃.The peak strain of sandstone containing fissures increases gradually while the average modulus decreases gradually with increasing temperature,and the mechanical properties of sandstone show obvious deterioration after 400 ℃.The peak strain of sandstone containing fissures increases gradually while the average modulus decreases gradually with increasing temperature;with increasing angle αof the fissure,the evolution characteristics of the macro-mechanical parameters of sandstone are closely related to the their own mechanical properties.When the temperature is 800 ℃,the correlation between the peak strength and average modulus of sandstone and the angle α of the fissure is obviously weakened.The failure modes of sandstone containing fissures after high temperature exposure are of three different kinds including:tensile crack failure,tensile and shear cracks mixed failure,and shear crack failure.Tensile and shear crack mixed failure occur mainly at low temperatures and small angles;tensile crack failure occurs at high temperatures and large angles.展开更多
基金Project(2015CB060200)supported by the National Basic Research and Development Program of ChinaProjects(51322403,51274254)supported by the National Natural Science Foundation of China
文摘In order to investigate the micro-process and inner mechanism of rock failure under impact loading, the laboratory tests were carried out on an improved split Hopkinson pressure bar (SHPB) system with synchronized measurement devices including a high-speed camera and a dynamic strain meter. The experimental results show that the specimens were in the state of good stress equilibrium during the post failure stage even when visible cracks were forming in the specimens. Rock specimens broke into strips but still could bear the external stress and keep force balance. Meanwhile, numerical tests with particle flow code (PFC) revealed that the failure process of rocks can be described by the evolution of micro-fractures. Shear cracks emerged firstly and stopped developing when the external stress was not high enough. Tensile cracks, however, emerged when the rock specimen reached its peak strength and played an important role in controlling the ultimate failure during the post failure stage.
文摘研究了一种G aA s层结构在[110]方向外部单轴应力下基于光致发光(PL)谱的测试方法.层结构的应力由螺旋测微器施加,可以产生平面内的压(拉)应力和应变,大小可以由胡克定律算出.随着应力的增大,观察到了谱峰明显的蓝移.在一系列的加压后,在1.432 eV,有一个新的峰出现在原有的峰的肩部附近,随着压力增加,两个峰逐渐分开.同时PL峰的半峰宽随着应力增加而逐渐加大.最后,本文根据实验结果分析了静水和单轴应力的不同.
基金supported by the State Key Development Program for Basic Research of China(No.2013CB036003)the National Natural Science Foundation of China(No.51374198)the CUMT Innovation and Entrepreneurship Fund for Undergraduates(No.201509)
文摘In order to investigate the physical and mechanical properties of sandstone containing fissures after exposure to high temperatures,fissures with different angles α were prefabricated in the plate sandstone samples,and the processed samples were then heated at 5 different temperatures.Indoor uniaxial compression was conducted to analyze the change rules of physical properties of sandstone after exposure to high temperature,and the deformation,strength and failure characteristics of sandstone containing fissures.The results show that,with increasing temperature,the volume of sandstone increases gradually while the quality and density decrease gradually,and the color of sandstone remains basically unchanged while the brightness increases markedly when the temperature is higher than 585 ℃;the peak strength of sandstone containing fissures first decreases then increases when the temperature is between 25℃and 400℃.The peak strain of sandstone containing fissures increases gradually while the average modulus decreases gradually with increasing temperature,and the mechanical properties of sandstone show obvious deterioration after 400 ℃.The peak strain of sandstone containing fissures increases gradually while the average modulus decreases gradually with increasing temperature;with increasing angle αof the fissure,the evolution characteristics of the macro-mechanical parameters of sandstone are closely related to the their own mechanical properties.When the temperature is 800 ℃,the correlation between the peak strength and average modulus of sandstone and the angle α of the fissure is obviously weakened.The failure modes of sandstone containing fissures after high temperature exposure are of three different kinds including:tensile crack failure,tensile and shear cracks mixed failure,and shear crack failure.Tensile and shear crack mixed failure occur mainly at low temperatures and small angles;tensile crack failure occurs at high temperatures and large angles.