构造了一种适合边界元分析裂纹问题的三角形单元,该单元中的形函数包含两部分,主要部分用于捕捉裂纹尖端上位移分布的陡峭特性(性质),另一部分为常规的拟合函数,体现裂纹尖端位置附近的物理量在其他方向上的连续分布。形函数主要部分的...构造了一种适合边界元分析裂纹问题的三角形单元,该单元中的形函数包含两部分,主要部分用于捕捉裂纹尖端上位移分布的陡峭特性(性质),另一部分为常规的拟合函数,体现裂纹尖端位置附近的物理量在其他方向上的连续分布。形函数主要部分的构造充分利用了已有理论研究获得的结论,在裂纹表面,随着距离远离尖端,位移分布与 r 函数保持同阶变化。在传统形函数的基础上,通过先乘以一项同阶于 r 的变量项,再在系数中将其在形函数所在点上的值除去,便得到新型的用于拟合裂纹尖端附近位移和面力分布的形函数。新的形函数能够满足形函数的delta性质,但归一性不再满足,因此,新的形函数只用于物理量的拟合,而几何量的拟合依然采用传统方案。通过对偶边界元方法计算裂纹尖端的张开位移后,利用一种位移外插方法计算获得应力强度因子。数值算例关注了一种无限域内的圆盘裂纹,应用新构造的三角形单元于对偶边界元中计算结构在受到斜拉力时裂纹尖端的三种应力强度因子。通过与参考解进行对比,验证了该插值方案用于对偶边界元分析裂纹问题时的正确性和高精度。展开更多
In fracture simulation,how to model the pre-existing cracks and simulate their propagation without remeshing is an important topic.The newly developed triangular element partition method(TEPM)provides an efficient app...In fracture simulation,how to model the pre-existing cracks and simulate their propagation without remeshing is an important topic.The newly developed triangular element partition method(TEPM)provides an efficient approach to this problem.It firstly meshes the cracked body regardless of the geometry integrity of the interesting object with triangular elements.After the meshing procedure is completed,some elements are intersected by cracks.For the element intersected by a crack,the TEPM takes the element partition technique to incorporate the discontinuity into the numerical model without any interpolation enrichment.By this approach,the TEPM can simulate fracture without mesh modification.In the TEPM,all the cracked elements are treated as the usual partitioned elements in which the crack runs through.The virtual node pairs(the intersection points of crack faces and elements)at the opposite faces of the crack move independently.Their displacements are respectively determined by their neighbor real nodes(nodes formatted in the original mesh scheme)at the same side of the crack.However,among these cracked elements,the element containing a crack tip,referred to as the crack tip element thereafter,behaves differently from those cut through by the crack.Its influence on the singular field at the vicinity of the fracture tip becomes increasingly significant with the element size increasing.In the crack tip element,the virtual node pair at the crack tip move consistently before fracture occurs while the virtual node pair separate and each virtual node moves independently after the fracture propagates.Accordingly,the crack tip element is automatically transformed into the usual partitioned element.In the present paper,the crack tip element is introduced into the TEPM to account for the effect of the crack tip.Validation examples indicate that the present method is almost free from the element size effect.It can reach the same precision as the conventional finite element method under the same meshing scheme.But the TEPM is much more efficient and convenient than the conventional finite element method because the TEPM avoids the troubles that the conventional finite element method suffers,e.g.,the meshing problem of cracked body,modification of mesh scheme,etc.Though the extended finite element method can also avoid these troubles,it introduces extra degrees of freedom due to node interpolation enrichment.Due to the simplicity of the present TEPM,it is believed that its perspective should be highly inspiring.展开更多
文摘构造了一种适合边界元分析裂纹问题的三角形单元,该单元中的形函数包含两部分,主要部分用于捕捉裂纹尖端上位移分布的陡峭特性(性质),另一部分为常规的拟合函数,体现裂纹尖端位置附近的物理量在其他方向上的连续分布。形函数主要部分的构造充分利用了已有理论研究获得的结论,在裂纹表面,随着距离远离尖端,位移分布与 r 函数保持同阶变化。在传统形函数的基础上,通过先乘以一项同阶于 r 的变量项,再在系数中将其在形函数所在点上的值除去,便得到新型的用于拟合裂纹尖端附近位移和面力分布的形函数。新的形函数能够满足形函数的delta性质,但归一性不再满足,因此,新的形函数只用于物理量的拟合,而几何量的拟合依然采用传统方案。通过对偶边界元方法计算裂纹尖端的张开位移后,利用一种位移外插方法计算获得应力强度因子。数值算例关注了一种无限域内的圆盘裂纹,应用新构造的三角形单元于对偶边界元中计算结构在受到斜拉力时裂纹尖端的三种应力强度因子。通过与参考解进行对比,验证了该插值方案用于对偶边界元分析裂纹问题时的正确性和高精度。
基金supported by the National Natural Science Foundation of China (Grant No. 11172172)the National Basic Research Program of China ("973" Project) (Grant No. 2011CB013505)
文摘In fracture simulation,how to model the pre-existing cracks and simulate their propagation without remeshing is an important topic.The newly developed triangular element partition method(TEPM)provides an efficient approach to this problem.It firstly meshes the cracked body regardless of the geometry integrity of the interesting object with triangular elements.After the meshing procedure is completed,some elements are intersected by cracks.For the element intersected by a crack,the TEPM takes the element partition technique to incorporate the discontinuity into the numerical model without any interpolation enrichment.By this approach,the TEPM can simulate fracture without mesh modification.In the TEPM,all the cracked elements are treated as the usual partitioned elements in which the crack runs through.The virtual node pairs(the intersection points of crack faces and elements)at the opposite faces of the crack move independently.Their displacements are respectively determined by their neighbor real nodes(nodes formatted in the original mesh scheme)at the same side of the crack.However,among these cracked elements,the element containing a crack tip,referred to as the crack tip element thereafter,behaves differently from those cut through by the crack.Its influence on the singular field at the vicinity of the fracture tip becomes increasingly significant with the element size increasing.In the crack tip element,the virtual node pair at the crack tip move consistently before fracture occurs while the virtual node pair separate and each virtual node moves independently after the fracture propagates.Accordingly,the crack tip element is automatically transformed into the usual partitioned element.In the present paper,the crack tip element is introduced into the TEPM to account for the effect of the crack tip.Validation examples indicate that the present method is almost free from the element size effect.It can reach the same precision as the conventional finite element method under the same meshing scheme.But the TEPM is much more efficient and convenient than the conventional finite element method because the TEPM avoids the troubles that the conventional finite element method suffers,e.g.,the meshing problem of cracked body,modification of mesh scheme,etc.Though the extended finite element method can also avoid these troubles,it introduces extra degrees of freedom due to node interpolation enrichment.Due to the simplicity of the present TEPM,it is believed that its perspective should be highly inspiring.