In this paper, by means of the maximum circle tensile stress on curve of constant ω and stress intensity factors by a path independent contour integral method, trajectories of maxed mode crack propagation are simulat...In this paper, by means of the maximum circle tensile stress on curve of constant ω and stress intensity factors by a path independent contour integral method, trajectories of maxed mode crack propagation are simulated through numerical manifold method. The crack propagation is traced dynamically by modifying the neighboring connection between the crack-top and nodes within elements in the calculating process. This method has the advantages such as less modified area, easiness of programming, high realizability and so on. Then a single sharp nicked specimen is used to verified the numerical result. It is shown that the provided method is reasonable and effective.展开更多
Based on the framework of the extended finite element method (XFEM), the enriched exponent discontinuous function is modified properly by introducing the rigidity ratio of two sides materials of interface crack, and t...Based on the framework of the extended finite element method (XFEM), the enriched exponent discontinuous function is modified properly by introducing the rigidity ratio of two sides materials of interface crack, and the portion integral scheme is adopted for interface elements containing two materials. To embody the singularity of the crack tip, the triangle function is introduced directly. What’s more, the maximum loop stress fracture criterion is adopted to determine the extension direction in extended material domains, and the true extension distance for each load step is determined by reducing or increasing half the current trial extension distance until the equivalent stress intensity factor reaches the type I fracture toughness of material. Finally, with the improved XFEM, the interface crack propagation in a cantilever deep beam and concrete gravity dam are simulated without re-meshing respectively and their failure modes are also analyzed.展开更多
基金Funded by the National Natural Science Foundation of China (No. 10272033) and Guangdong Provincial Natural Science Foundation(Nos.04105386,5300090 and 05001844).
文摘In this paper, by means of the maximum circle tensile stress on curve of constant ω and stress intensity factors by a path independent contour integral method, trajectories of maxed mode crack propagation are simulated through numerical manifold method. The crack propagation is traced dynamically by modifying the neighboring connection between the crack-top and nodes within elements in the calculating process. This method has the advantages such as less modified area, easiness of programming, high realizability and so on. Then a single sharp nicked specimen is used to verified the numerical result. It is shown that the provided method is reasonable and effective.
基金supported by the National Natural Science Foundation of China (Grant No. 10972072)the National Basic Research Program of China ("973" Project) (Grant No. 2007CB714104)the Special Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering at Hohai University (Grant No. 2009585912)
文摘Based on the framework of the extended finite element method (XFEM), the enriched exponent discontinuous function is modified properly by introducing the rigidity ratio of two sides materials of interface crack, and the portion integral scheme is adopted for interface elements containing two materials. To embody the singularity of the crack tip, the triangle function is introduced directly. What’s more, the maximum loop stress fracture criterion is adopted to determine the extension direction in extended material domains, and the true extension distance for each load step is determined by reducing or increasing half the current trial extension distance until the equivalent stress intensity factor reaches the type I fracture toughness of material. Finally, with the improved XFEM, the interface crack propagation in a cantilever deep beam and concrete gravity dam are simulated without re-meshing respectively and their failure modes are also analyzed.