Deformation behavior of slab at the straightening stage during continuous casting was simulated by the explicit dynamic finite element method,and the stress distribution along the width direction of the slab and its c...Deformation behavior of slab at the straightening stage during continuous casting was simulated by the explicit dynamic finite element method,and the stress distribution along the width direction of the slab and its change regularity at slab center during continuous casting were obtained.The influence of distribution and change of stress on the propagation of longitudinal cracks on slab surface was discussed.The results show that the tensional stress appears on slab surface at the inner arc side and the compressive stress appears on slab surface at the outer arc side at stages 6-8 in straightening zone during continuous casting.Longitudinal cracks generally appear on slab top surface and do not appear on slab bottom surface,which are also observed in industry.展开更多
The particle simulation method is used to study the effects of loading waveforms (i.e. square, sinusoidal and triangle waveforms) on rock damage at mesoscopic scale. Then some influencing factors on rock damage at t...The particle simulation method is used to study the effects of loading waveforms (i.e. square, sinusoidal and triangle waveforms) on rock damage at mesoscopic scale. Then some influencing factors on rock damage at the mesoscopic scale, such as loading frequency, stress amplitude, mean stress, confining pressure and loading sequence, are also investigated with sinusoidal waveform in detail. The related numerical results have demonstrated that: 1) the loading waveform has a certain effect on rock failure processes. The square waveform has the most damage within these waveforms, while the triangle waveform has less damage than sinusoidal waveform. In each cycle, the number of microscopic cracks increases in the loading stage, while it keeps nearly constant in the unloading stage. 2) The loading frequency, stress amplitude, mean stress, confining pressure and loading sequence have considerable effects on rock damage subjected to cyclic loading. The higher the loading frequency, stress amplitude and mean stress, the greater the damage the rock accumulated; in contrast, the lower the confining pressure, the greater the damage the rock has accumulated. 3) There is a threshold value of mean stress and stress amplitude, below which no further damage accumulated after the first few cycle loadings. 4) The high-to-low loading sequence has more damage than the low-to-high loading sequence, suggesting that the rock damage is loading-path dependent.展开更多
基金Project(50634030) supported by the National Natural Science Foundation of ChinaProject(20090042120005) supported by the Doctorate Foundation of the Ministry of Education of ChinaProject(2006CB605208-1) supported by the State Basic Research Program of China
文摘Deformation behavior of slab at the straightening stage during continuous casting was simulated by the explicit dynamic finite element method,and the stress distribution along the width direction of the slab and its change regularity at slab center during continuous casting were obtained.The influence of distribution and change of stress on the propagation of longitudinal cracks on slab surface was discussed.The results show that the tensional stress appears on slab surface at the inner arc side and the compressive stress appears on slab surface at the outer arc side at stages 6-8 in straightening zone during continuous casting.Longitudinal cracks generally appear on slab top surface and do not appear on slab bottom surface,which are also observed in industry.
基金Projects(11702235,51641905,41472269) supported by the National Natural Science Foundation of ChinaProject(2017JJ3290) supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(17C1540) supported by the Scientific Research Foundation of Education Department of Hunan Province,ChinaProject(16GES07) supported by the Open Research Fund of Hunan Key Laboratory of Geomechanics and Engineering Safety,China
文摘The particle simulation method is used to study the effects of loading waveforms (i.e. square, sinusoidal and triangle waveforms) on rock damage at mesoscopic scale. Then some influencing factors on rock damage at the mesoscopic scale, such as loading frequency, stress amplitude, mean stress, confining pressure and loading sequence, are also investigated with sinusoidal waveform in detail. The related numerical results have demonstrated that: 1) the loading waveform has a certain effect on rock failure processes. The square waveform has the most damage within these waveforms, while the triangle waveform has less damage than sinusoidal waveform. In each cycle, the number of microscopic cracks increases in the loading stage, while it keeps nearly constant in the unloading stage. 2) The loading frequency, stress amplitude, mean stress, confining pressure and loading sequence have considerable effects on rock damage subjected to cyclic loading. The higher the loading frequency, stress amplitude and mean stress, the greater the damage the rock accumulated; in contrast, the lower the confining pressure, the greater the damage the rock has accumulated. 3) There is a threshold value of mean stress and stress amplitude, below which no further damage accumulated after the first few cycle loadings. 4) The high-to-low loading sequence has more damage than the low-to-high loading sequence, suggesting that the rock damage is loading-path dependent.