The former studies indicate that loading rates significantly affect dynamic behavior of brittle materials,for instance,the dynamic compressive and tensile strength increase with loading rates.However,there still are m...The former studies indicate that loading rates significantly affect dynamic behavior of brittle materials,for instance,the dynamic compressive and tensile strength increase with loading rates.However,there still are many unknown or partially unknown aspects.For example,whether loading rates have effect on crack dynamic propagating behavior(propagation toughness,velocity and arrest,etc).To further explore the effect of loading rates on crack dynamic responses,a large-size single-cleavage trapezoidal open(SCTO)specimen was proposed,and impacting tests using the SCTO specimen under drop plate impact were conducted.Crack propagation gauges(CPGs)were employed in measuring impact loads,crack propagation time and velocities.In order to verify the testing result,the corresponding numerical model was established using explicit dynamic software AUTODYN,and the simulation result is basically consistent with the experimental results.The ABAQUS software was used to calculate the dynamic SIFs.The universal function was calculated by fractal method.The experimental-numerical method was employed in determining initiation toughness and propagation toughness.The results indicate that crack propagating velocities,dynamic fracture toughness and energy release rates increase with loading rates;crack delayed initiation time decreases with loading rates.展开更多
In this study,the effect of loading rate on shale fracture behaviors was investigated under dynamic and static loading conditions.Cracked straight through Brazilian disc(CSTBD)shale specimens were tested with a split ...In this study,the effect of loading rate on shale fracture behaviors was investigated under dynamic and static loading conditions.Cracked straight through Brazilian disc(CSTBD)shale specimens were tested with a split Hopkinson pressure bar(SHPB)setup and INSTRON1346 servo-testing machine under pure mode I loading conditions.During the test,the crack propagation process was recorded by high-speed(HS)camera,and the acoustic emission(AE)signal generated by the fracture was collected by acoustic emission(AE)system.At the same time,crack propagation gauge(CPG)was used to measure the crack propagation velocity of the specimen.The results show that the crack propagation velocity and fracture toughness of shale have a positive correlation with the loading rate.The relationship among the crack propagation velocity,the fracture toughness and the loading rate is established under the static loading condition.In addition,the characteristics of AE signals with different loading rates are analyzed.It is found that the AE signals generated by microcrack growth decrease with the increase of loading rates.Meanwhile,the turning point of cumulative counting moves forward as the loading rate increases,which shows that the AE signal generated by shale fracture at low loading rate mainly comes from the initiation and propagation of microcracks,while at high loading rate it mainly comes from the formation of macro large-scale cracks.The fracture mechanism that causes shale fracture toughness and crack propagation velocity to vary with loading rate is also discussed based on the analysis results of AE signals.展开更多
Vickers indentation test was used to study the effects of mineral composition and microstructure on crack resistance of sintered ore, and the initiation and propagation of cracks in different minerals contained in sin...Vickers indentation test was used to study the effects of mineral composition and microstructure on crack resistance of sintered ore, and the initiation and propagation of cracks in different minerals contained in sintered ore were examined. The results indicate that the microstructure of calcium ferrites is a major factor influencing crack resistance of sintered ore. Finer grain size of calcium ferrite will lead to higher cracking threshold and better crack resistance of sintered ore. The formation of calcium ferrite with fine grain size during sintering process is favorable for crack resistance of sintered ore.展开更多
The asymmetric semi-circular bend(ASCB)specimen has been proposed to investigate the cracking behavior in different geo and construction materials and attracted the attention of researchers due to its advantages.Howev...The asymmetric semi-circular bend(ASCB)specimen has been proposed to investigate the cracking behavior in different geo and construction materials and attracted the attention of researchers due to its advantages.However,there are few studies on the fracture toughness determination of rock materials.In this work,a series of fracture tests were performed with the ASCB specimens made of granite.The onset of fracture,crack initiation angle and crack propagating trajectory was analyzed in detail combined with several mixed mode fracture criteria.The influence of the crack length on the mode Ⅰ/Ⅱ fracture toughness was studied.A comparison between the fracture toughness ratios predicted by varying criteria and experimental results was conducted.The relationship between experimentally determined crack initiation angles and curves of the generalized maximum tangential stress(GMTS)criterion was obtained.The fracture process of the specimen was recorded with the high-speed camera.The shortcomings of the ASCB specimens for the fracture toughness determination of rock materials were discussed.The results may provide a reference for analysis of mixed mode I and II fracture behavior of brittle materials.展开更多
To investigate the influence of loading rate and high temperature on the dynamic fracture toughness of rock,dynamic fracture tests were carried out on notched semi-circular bend specimens under four temperature condit...To investigate the influence of loading rate and high temperature on the dynamic fracture toughness of rock,dynamic fracture tests were carried out on notched semi-circular bend specimens under four temperature conditions based on the split Hopkinson pressure bar system.Experimental and analytical methods were applied to investigating the effect of temperature gradient on the stress waves.A high-speed camera was used to check the fracture characteristics of the specimens.The results demonstrate that the temperature gradient on the bars will not significantly distort the shape of the stress wave.The dynamic force balance is achieved even when the specimens are at a temperature of 400°C.The dynamic fracture toughness linearly develops with the increase of loading rate within the temperature range of 25-400°C,and high temperature has a strengthening effect on the dynamic fracture toughness.展开更多
The three-point bending experiments were applied to investigating effects of loading rates on fracture toughness of Huanglong limestone. The fracture toughness of Huanglong limestone was measured over a wide range of ...The three-point bending experiments were applied to investigating effects of loading rates on fracture toughness of Huanglong limestone. The fracture toughness of Huanglong limestone was measured over a wide range of loading rates from 9 × 10-4 to 1.537 MPa.m1/2/s. According to the approximate relationship between static and dynamic fracture toughness of Huanglong limestone, relationship between the growth velocity of crack and dynamic fracture toughness was obtained. The main conclusions are summarized as follows. (1) When the loading rate is higher than 0.027 MPa-ml/2/s, the fracture toughness of Huanglong limestone increases markedly with increasing loading rate. However, when loading rate is lower than 0.027 MPa-ml/2/s, fracture toughness slightly increases with an increase in loading rate. (2) It is found from experimental results that fracture toughness is linearly proportional to the logarithmic expression of loading rate. (3) For Huanglong limestone, when the growth velocity of crack is lower than 100 m/s, the energy release rate slightly decreases with increasing the growth velocity of crack. However, when the growth velocity of crack is higher than 1 000 m/s, the energy release rate dramatically decreases with an increase in the crack growth velocity.展开更多
Many experimental investigations have previously been performed and recentlydone on different shipbuilding structural steels where the specimens size and crack depth/specimenwidth (a/W) were varied. A series of intere...Many experimental investigations have previously been performed and recentlydone on different shipbuilding structural steels where the specimens size and crack depth/specimenwidth (a/W) were varied. A series of interesting results have been gained. It is worthwhile to havea review on the effect of a/W ratio on fracture toughness, and further theoretical analysis isnecessary. In this paper, experimental work in elastic-plastic fracture mechanics (EPFM) wasdiscussed. Tests had been carried out on 10 kinds of strength steels. Results showed that J_i andδ_i. values increased with decreasing a/W when a/W【0.3 for three-point bend specimens and thatshallow crack specimens which have less constrained flow field give markedly higher values oftoughness than deeply notched specimens. However, for a/W】0.3, the toughness was found to beindependent of a/W. Slip line field analysis shows that for shallow cracks, the hydrostatic stressis lower than that from standard deeply cracked bend specimen which develops a high level of cracktip constraint, provides a lower bound estimate of toughness, and will ensure an unduly conservativeapproach when applied to structure defects especially if initiation values of COD / J-integral areused.展开更多
In order to simultaneously measure the initiation toughness of pure mode Ⅰ and mode Ⅱ cracks in one specimen,a large-size double-cracked concave-convex plate(DCCP)specimen configuration was proposed.Impacting tests ...In order to simultaneously measure the initiation toughness of pure mode Ⅰ and mode Ⅱ cracks in one specimen,a large-size double-cracked concave-convex plate(DCCP)specimen configuration was proposed.Impacting tests were implemented in the drop plate impact device.Strain gauges were employed to measure impact loads and crack initiation time.The corresponding numerical model was established by using the dynamic finite difference program AUTODYN,and the experimental-numerical method and ABAQUS code were utilized to obtain the initial fracture toughness of the crack.Using experiments and numerical research,we concluded that the DCCP specimen is suitable for measuring the initial fracture toughness of pure mode Ⅰ and mode Ⅱ cracks at the same time;the dynamic initiation toughness increases with the increase of loading rate and the crack initiation time decreases with increasing loading rate;the initiation toughness of mode Ⅱ crack is 0.5 times that of mode Ⅰ crack when subjected to the same loading rate.For the pre-crack in the vicinity of the bottom of a sample,when its length increases from 20 to 100 mm,the dynamic initiation toughness of the pure mode Ⅰ crack gradually decreases,and the longer the lower crack length is,the easier the crack would initiate,but the dynamic initiation toughness of pure mode Ⅱ crack varies little.展开更多
Silicon carbide (SiC) composites were prepared by hot-press sintering from α-SiC starting powders with BaAl2Si2O8 (BAS). The effects of additives on densification, microstructure, flexural strength, and fracture beha...Silicon carbide (SiC) composites were prepared by hot-press sintering from α-SiC starting powders with BaAl2Si2O8 (BAS). The effects of additives on densification, microstructure, flexural strength, and fracture behavior of the liquid phase sintered (LPS) SiC composites were investigated. The results show that the served BAS effectively promotes the densification of SiC composites. The flexural strength and fracture toughness of the SiC composites can reach a maximum value of 454 MPa and 5.1 MPa·m1/2, respectively, for 40% (w/w) BAS/SiC composites. SiC grain pullout, crack deflection, and crack bridging were main toughening mechanisms for the sintered composites.展开更多
基金Projects(11672194,U19A2098)supported by the National Natural Science Foundation of ChinaProject(2018SCU12047)supported by Fundamental Research Funds for the Central Universities,ChinaProject(2018JZ0036)supported by the Project of Science and Technology of Sichuan Province,China。
文摘The former studies indicate that loading rates significantly affect dynamic behavior of brittle materials,for instance,the dynamic compressive and tensile strength increase with loading rates.However,there still are many unknown or partially unknown aspects.For example,whether loading rates have effect on crack dynamic propagating behavior(propagation toughness,velocity and arrest,etc).To further explore the effect of loading rates on crack dynamic responses,a large-size single-cleavage trapezoidal open(SCTO)specimen was proposed,and impacting tests using the SCTO specimen under drop plate impact were conducted.Crack propagation gauges(CPGs)were employed in measuring impact loads,crack propagation time and velocities.In order to verify the testing result,the corresponding numerical model was established using explicit dynamic software AUTODYN,and the simulation result is basically consistent with the experimental results.The ABAQUS software was used to calculate the dynamic SIFs.The universal function was calculated by fractal method.The experimental-numerical method was employed in determining initiation toughness and propagation toughness.The results indicate that crack propagating velocities,dynamic fracture toughness and energy release rates increase with loading rates;crack delayed initiation time decreases with loading rates.
基金Project(41630642)supported by the National Natural Science Foundation of China。
文摘In this study,the effect of loading rate on shale fracture behaviors was investigated under dynamic and static loading conditions.Cracked straight through Brazilian disc(CSTBD)shale specimens were tested with a split Hopkinson pressure bar(SHPB)setup and INSTRON1346 servo-testing machine under pure mode I loading conditions.During the test,the crack propagation process was recorded by high-speed(HS)camera,and the acoustic emission(AE)signal generated by the fracture was collected by acoustic emission(AE)system.At the same time,crack propagation gauge(CPG)was used to measure the crack propagation velocity of the specimen.The results show that the crack propagation velocity and fracture toughness of shale have a positive correlation with the loading rate.The relationship among the crack propagation velocity,the fracture toughness and the loading rate is established under the static loading condition.In addition,the characteristics of AE signals with different loading rates are analyzed.It is found that the AE signals generated by microcrack growth decrease with the increase of loading rates.Meanwhile,the turning point of cumulative counting moves forward as the loading rate increases,which shows that the AE signal generated by shale fracture at low loading rate mainly comes from the initiation and propagation of microcracks,while at high loading rate it mainly comes from the formation of macro large-scale cracks.The fracture mechanism that causes shale fracture toughness and crack propagation velocity to vary with loading rate is also discussed based on the analysis results of AE signals.
文摘Vickers indentation test was used to study the effects of mineral composition and microstructure on crack resistance of sintered ore, and the initiation and propagation of cracks in different minerals contained in sintered ore were examined. The results indicate that the microstructure of calcium ferrites is a major factor influencing crack resistance of sintered ore. Finer grain size of calcium ferrite will lead to higher cracking threshold and better crack resistance of sintered ore. The formation of calcium ferrite with fine grain size during sintering process is favorable for crack resistance of sintered ore.
基金Projects(52004182,51804110,51904101)supported by the National Natural Science Foundation of ChinaProject(2020JJ5188)supported by the Natural Science Foundation of Hunan Province,China。
文摘The asymmetric semi-circular bend(ASCB)specimen has been proposed to investigate the cracking behavior in different geo and construction materials and attracted the attention of researchers due to its advantages.However,there are few studies on the fracture toughness determination of rock materials.In this work,a series of fracture tests were performed with the ASCB specimens made of granite.The onset of fracture,crack initiation angle and crack propagating trajectory was analyzed in detail combined with several mixed mode fracture criteria.The influence of the crack length on the mode Ⅰ/Ⅱ fracture toughness was studied.A comparison between the fracture toughness ratios predicted by varying criteria and experimental results was conducted.The relationship between experimentally determined crack initiation angles and curves of the generalized maximum tangential stress(GMTS)criterion was obtained.The fracture process of the specimen was recorded with the high-speed camera.The shortcomings of the ASCB specimens for the fracture toughness determination of rock materials were discussed.The results may provide a reference for analysis of mixed mode I and II fracture behavior of brittle materials.
基金support from the National Natural Science Foundation of China(No.41972283)。
文摘To investigate the influence of loading rate and high temperature on the dynamic fracture toughness of rock,dynamic fracture tests were carried out on notched semi-circular bend specimens under four temperature conditions based on the split Hopkinson pressure bar system.Experimental and analytical methods were applied to investigating the effect of temperature gradient on the stress waves.A high-speed camera was used to check the fracture characteristics of the specimens.The results demonstrate that the temperature gradient on the bars will not significantly distort the shape of the stress wave.The dynamic force balance is achieved even when the specimens are at a temperature of 400°C.The dynamic fracture toughness linearly develops with the increase of loading rate within the temperature range of 25-400°C,and high temperature has a strengthening effect on the dynamic fracture toughness.
基金Projects(50490275, 50621403, 50778184) supported by the National Natural Science Foundation of ChinaProject(NCET-07-0911) supported by Program of New Century Talents of Ministry of EducationProject(CSTC, 2009BA4046) supported by the Natural Science Foundation of CQ CSTC
文摘The three-point bending experiments were applied to investigating effects of loading rates on fracture toughness of Huanglong limestone. The fracture toughness of Huanglong limestone was measured over a wide range of loading rates from 9 × 10-4 to 1.537 MPa.m1/2/s. According to the approximate relationship between static and dynamic fracture toughness of Huanglong limestone, relationship between the growth velocity of crack and dynamic fracture toughness was obtained. The main conclusions are summarized as follows. (1) When the loading rate is higher than 0.027 MPa-ml/2/s, the fracture toughness of Huanglong limestone increases markedly with increasing loading rate. However, when loading rate is lower than 0.027 MPa-ml/2/s, fracture toughness slightly increases with an increase in loading rate. (2) It is found from experimental results that fracture toughness is linearly proportional to the logarithmic expression of loading rate. (3) For Huanglong limestone, when the growth velocity of crack is lower than 100 m/s, the energy release rate slightly decreases with increasing the growth velocity of crack. However, when the growth velocity of crack is higher than 1 000 m/s, the energy release rate dramatically decreases with an increase in the crack growth velocity.
文摘Many experimental investigations have previously been performed and recentlydone on different shipbuilding structural steels where the specimens size and crack depth/specimenwidth (a/W) were varied. A series of interesting results have been gained. It is worthwhile to havea review on the effect of a/W ratio on fracture toughness, and further theoretical analysis isnecessary. In this paper, experimental work in elastic-plastic fracture mechanics (EPFM) wasdiscussed. Tests had been carried out on 10 kinds of strength steels. Results showed that J_i andδ_i. values increased with decreasing a/W when a/W【0.3 for three-point bend specimens and thatshallow crack specimens which have less constrained flow field give markedly higher values oftoughness than deeply notched specimens. However, for a/W】0.3, the toughness was found to beindependent of a/W. Slip line field analysis shows that for shallow cracks, the hydrostatic stressis lower than that from standard deeply cracked bend specimen which develops a high level of cracktip constraint, provides a lower bound estimate of toughness, and will ensure an unduly conservativeapproach when applied to structure defects especially if initiation values of COD / J-integral areused.
基金Projects(U19A2098,1210021843)supported by the National Natural Science Foundation of ChinaProject(2021SCU12130)supported by Fundamental Research Funds for the Central Universities,China+1 种基金Project(2021YJ0511)supported by the Sichuan Science and Technology Program,ChinaProjects(DESEYU202205,DESE202005)supported by the Open Fund of Key Laboratory of Deep Earth Science and Engineering,China。
文摘In order to simultaneously measure the initiation toughness of pure mode Ⅰ and mode Ⅱ cracks in one specimen,a large-size double-cracked concave-convex plate(DCCP)specimen configuration was proposed.Impacting tests were implemented in the drop plate impact device.Strain gauges were employed to measure impact loads and crack initiation time.The corresponding numerical model was established by using the dynamic finite difference program AUTODYN,and the experimental-numerical method and ABAQUS code were utilized to obtain the initial fracture toughness of the crack.Using experiments and numerical research,we concluded that the DCCP specimen is suitable for measuring the initial fracture toughness of pure mode Ⅰ and mode Ⅱ cracks at the same time;the dynamic initiation toughness increases with the increase of loading rate and the crack initiation time decreases with increasing loading rate;the initiation toughness of mode Ⅱ crack is 0.5 times that of mode Ⅰ crack when subjected to the same loading rate.For the pre-crack in the vicinity of the bottom of a sample,when its length increases from 20 to 100 mm,the dynamic initiation toughness of the pure mode Ⅰ crack gradually decreases,and the longer the lower crack length is,the easier the crack would initiate,but the dynamic initiation toughness of pure mode Ⅱ crack varies little.
文摘Silicon carbide (SiC) composites were prepared by hot-press sintering from α-SiC starting powders with BaAl2Si2O8 (BAS). The effects of additives on densification, microstructure, flexural strength, and fracture behavior of the liquid phase sintered (LPS) SiC composites were investigated. The results show that the served BAS effectively promotes the densification of SiC composites. The flexural strength and fracture toughness of the SiC composites can reach a maximum value of 454 MPa and 5.1 MPa·m1/2, respectively, for 40% (w/w) BAS/SiC composites. SiC grain pullout, crack deflection, and crack bridging were main toughening mechanisms for the sintered composites.