Nappe structure, as was first discovered by the authors during the regional geological survey at the scale of 1:50,000 in The Jinggang Mountain, is mainly comprised of a series of NNE-NE-striking thrust fault zones an...Nappe structure, as was first discovered by the authors during the regional geological survey at the scale of 1:50,000 in The Jinggang Mountain, is mainly comprised of a series of NNE-NE-striking thrust fault zones and thrust sheets among them. Sinian, Cambrian, Ordovician, Devonian, Carboniferous,Triassic, Jurassic and Cretaceous strata are involved in the thrust nappe system. The nappe structure is of the type of duplex structures formed as a result of the earlier stage migration from SE to NW and late stage migration from E to W of sedimentary cover or basement strata. Formation of the nappe structure in the studied area involves two main epochs: Early Yanshanian and Late Yanshanian to Early Himalayan. The mineral deposits and the buried coalfields in the area, especially the latter, are extensively controlled by the nappe structure.展开更多
This paper investigates the application of distributed optical fiber strain sensors to civil engineering structures, because no other tool can satisfactorily detect the location of the unpredictable phenomenon. In fac...This paper investigates the application of distributed optical fiber strain sensors to civil engineering structures, because no other tool can satisfactorily detect the location of the unpredictable phenomenon. In fact, the locations of cracks in the concrete structure are unknown a priori; therefore, a fully distributed sensor is necessary to detect them. The Brillouin optical correlation domain analysis (BOCDA), which offers high spatial resolution by using stimulated Brillouin scattering along the whole length of the optical fiber, is used in a wide range of civil engineering applications, and the same has undergone significant development over the last decade. In this paper, it is demonstrated how a BOCDA-based strain sensor can be employed to monitor cracks in concrete. Crack monitoring on the surface of the concrete member provides useful information for evaluating stiffness and durability of the structure, particularly for early detection of tiny cracks, which is essential for preventing crack growth and dispersion. The crack-induced strain distribution was analytically investigated, and it was proved that BOCDA can identify even a small crack before its visual recognition by a beam test. Moreover, periodical crack monitoring was successfully executed on a pedestrian deck for five years.展开更多
基金supported by a grant from the Ministry of Land and Resources(Project No:19961300002011)for the regional geological survey of the Jinggangshan City section,Yaqian section,Tianhe section,Nashan section of the 1:50,000 geologic mapa key orientation grant(No.KZCXZ-SW-117)of CAS Knowledge Innovation Project for the constitution,structure and evolution of the geotectonic systems of South China Sea and its adjacent regions.
文摘Nappe structure, as was first discovered by the authors during the regional geological survey at the scale of 1:50,000 in The Jinggang Mountain, is mainly comprised of a series of NNE-NE-striking thrust fault zones and thrust sheets among them. Sinian, Cambrian, Ordovician, Devonian, Carboniferous,Triassic, Jurassic and Cretaceous strata are involved in the thrust nappe system. The nappe structure is of the type of duplex structures formed as a result of the earlier stage migration from SE to NW and late stage migration from E to W of sedimentary cover or basement strata. Formation of the nappe structure in the studied area involves two main epochs: Early Yanshanian and Late Yanshanian to Early Himalayan. The mineral deposits and the buried coalfields in the area, especially the latter, are extensively controlled by the nappe structure.
文摘This paper investigates the application of distributed optical fiber strain sensors to civil engineering structures, because no other tool can satisfactorily detect the location of the unpredictable phenomenon. In fact, the locations of cracks in the concrete structure are unknown a priori; therefore, a fully distributed sensor is necessary to detect them. The Brillouin optical correlation domain analysis (BOCDA), which offers high spatial resolution by using stimulated Brillouin scattering along the whole length of the optical fiber, is used in a wide range of civil engineering applications, and the same has undergone significant development over the last decade. In this paper, it is demonstrated how a BOCDA-based strain sensor can be employed to monitor cracks in concrete. Crack monitoring on the surface of the concrete member provides useful information for evaluating stiffness and durability of the structure, particularly for early detection of tiny cracks, which is essential for preventing crack growth and dispersion. The crack-induced strain distribution was analytically investigated, and it was proved that BOCDA can identify even a small crack before its visual recognition by a beam test. Moreover, periodical crack monitoring was successfully executed on a pedestrian deck for five years.