As an estimate for the in-situ spalling strength around massive underground excavations to moderately jointed brittle rocks, crack initiation stress marks the initiation of rock micro fracturing. It is crucial to accu...As an estimate for the in-situ spalling strength around massive underground excavations to moderately jointed brittle rocks, crack initiation stress marks the initiation of rock micro fracturing. It is crucial to accurately identify crack initiation stress level by proper method. In this study, confined compression tests of sandstone samples are used to examine the validity/applicability of proposed axial strain stiffness method. The results show that by highlighting the minuscule changes in stress-strain curve, the axial strain stiffness curve provided further insight into rock failure process and revealed five stages:(a) irregular fluctuation,(b) nearly horizontal regular fluctuation,(c) irregular fluctuation gradually decreasing to zero,(d) extreme fluctuation, and(e) near zero, which mainly correspond to five stages of stress–strain curve. The ratio of crack-initiation stress to peak strength determined using this approach is 0.44–0.51, similar to the ranges previously reported by other researchers. In this method, the key is to accurately detect the end point of the stage(b), "nearly horizontal regular fluctuation" characterized by a sudden change in axial strain stiffness curve, and the sudden change signifies crack initiation in rock sample. Finally, the research indicates that the axial strain stiffness curve can provide a mean to identify the crack-initiation stress thresholds in brittle rocks.展开更多
The Songnen Plain has a typical soda-saline soil, which often shrinks and cracks under natural conditions during water evaporation. This study aims to analyze the relationships between the crack characteristics and th...The Songnen Plain has a typical soda-saline soil, which often shrinks and cracks under natural conditions during water evaporation. This study aims to analyze the relationships between the crack characteristics and the soil properties of soda-saline soils quantitatively, and attempts to establish prediction models for the main soil properties of soda-saline soils based on the results. In order to achieve these objectives, a desiccation cracking test was conducted using 17 soil specimens with different salinity levels under controlled laboratory conditions. Correlation analysis was then performed between the crack characteristics and the soil properties. The results indicate that the crack characteristics can well represent the surface appearances of cracked soils, they also can well distinguish the salinity levels of soda-saline soils while the clay contents and mineralogical compositions of soils are stable. Among the crack characteristics, crack length has the best relationships with the salinity levels of soda-saline soils. Specifically, the crack length has high correlation(R2 > 0.87) with the electrical conductivity(EC), Na+, CO32– and the salinity, it also has reasonable relationship(R2 > 0.68) with HCO3–, this indicates crack length can be well used for the prediction of these properties of soda-saline soils.展开更多
Faulted gas reservoirs are very common in reality,where some linear leaky faults divide the gas reservoir into several reservoir regions with distinct physical properties.This kind of gas reservoirs is also known as l...Faulted gas reservoirs are very common in reality,where some linear leaky faults divide the gas reservoir into several reservoir regions with distinct physical properties.This kind of gas reservoirs is also known as linear composite(LC)gas reservoirs.Although some analytical/semi-analytical models have been proposed to investigate pressure behaviors of producing wells in LC reservoirs based on the linear composite ideas,almost all of them focus on vertical wells and studies on multiple fractured horizontal wells are rare.After the pressure wave arrives at the leaky fault,pressure behaviors of multiple fractured horizontal wells will be affected by the leaky faults.Understanding the effect of leaky faults on pressure behaviors of multiple fractured horizontal wells is critical to the development design.Therefore,a semi-analytical model of finite-conductivity multiple fractured horizontal(FCMFH)wells in LC gas reservoirs is established based on Laplace-space superposition principle and fracture discrete method.The proposed model is validated against commercial numerical simulator.Type curves are obtained to study pressure characteristics and identify flow regimes.The effects of some parameters on type curves are discussed.The proposed model will have a profound effect on developing analytical/semi-analytical models for other complex well types in LC gas reservoirs.展开更多
Ocean platforms are subjected to a variety of environment loads, such as those from winds, waves, currents, etc. In this study, the torsion problems of a gravity platform column with cracks under wind load were invest...Ocean platforms are subjected to a variety of environment loads, such as those from winds, waves, currents, etc. In this study, the torsion problems of a gravity platform column with cracks under wind load were investigated. The colmnn was assumed to be a composite cylinder. Therefore the torsion fracture problem of a composite cylinder was considered, and new boundary integral equations for the Saint-Venant torsion problem of a composite cylinder with curvilinear cracks were derived. The problem was re- duced to solving the boundary integral equations on every boundary. By using the new boundary element method, the torsion prob- lem of the gravity platform colunm with a straight crack under various wind loads was calculated. The obtained results were com- pared with those obtained for a torsion problem of the same column without cracks to prove the applicability of the present method. The comparison showed that the detrimental effect of cracks in a column should be considered in marine engineering.展开更多
This paper presents a numerical study on the pullout behavior of the rockholt grouted system. Among the complicated failure modes of the rockbolt grouted system, the crack of the grout is concerned here. A tri- linear...This paper presents a numerical study on the pullout behavior of the rockholt grouted system. Among the complicated failure modes of the rockbolt grouted system, the crack of the grout is concerned here. A tri- linear cohesive zone model (CZM) is used to simulate the inteffacial behavior of rockbolt-grout interface: and a plastic damaged model is adopted for the grout materials. The feasibility of the numerical method is verified by comparing the calculated results with the test observations. The numerical results indicate that two types of cracks of the grout materials can be identified as the inclined crack and the horizontal crack. The inclined crack forms firstly and then the horizontal crack. Both cracks can reduce the interracial shear stress and thus reduce the load transfer efficiency. Further analysis indicates that the crack of the gout material can induce the obvious drops of load capacity, which is not a safe failure mode. This study leads to a better understanding of the mechanism for rockbolt grouted system.展开更多
In order to investigate propagation regularity of hydraulic fractures in the mode of multi-well pads, numerical modeling of simultaneous hydraulic fracturing of multiple wells was conducted. The mathematical model was...In order to investigate propagation regularity of hydraulic fractures in the mode of multi-well pads, numerical modeling of simultaneous hydraulic fracturing of multiple wells was conducted. The mathematical model was established coupling rock deformation with fluid flow in the fractures and wellbores. And then the model was solved by displacement discontinuity method coupling with implicit level set method. The implicit method was based on fracture tip asymptotical solution and used to determine fracture growth length. Simulation results showed that when multiple wells were fractured simultaneously, adjacent fractures might propagate towards each other, showing an effect of attraction other than repulsion. Fracture spacing and well spacing had significant influence on the propagation path and geometry of multiple fractures. Furthermore, when multiple wells were fractured simultaneously, stress reversal regions had a large area, and stress reversal regions were distributed not only in the area between fractures but also on the outside of them. The area of stress reversal regions was related to fracture spacing and well spacing. Results indicated that multi-well fracturing induced larger area of stress reversal regions than one-well fracturing, which was beneficial to generating complex fracture network in unconventional reservoirs.展开更多
基金supported by the National Natural Science Foundation of China(Grants No.41772329,41572283 and 41230635)the funding of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Nos.SKLGP2017Z001 and SKLGP2013Z004)supported by the Funding of Science and Technology Office of Sichuan Province(Grants No.2015JQ0020 and 2017TD0018)
文摘As an estimate for the in-situ spalling strength around massive underground excavations to moderately jointed brittle rocks, crack initiation stress marks the initiation of rock micro fracturing. It is crucial to accurately identify crack initiation stress level by proper method. In this study, confined compression tests of sandstone samples are used to examine the validity/applicability of proposed axial strain stiffness method. The results show that by highlighting the minuscule changes in stress-strain curve, the axial strain stiffness curve provided further insight into rock failure process and revealed five stages:(a) irregular fluctuation,(b) nearly horizontal regular fluctuation,(c) irregular fluctuation gradually decreasing to zero,(d) extreme fluctuation, and(e) near zero, which mainly correspond to five stages of stress–strain curve. The ratio of crack-initiation stress to peak strength determined using this approach is 0.44–0.51, similar to the ranges previously reported by other researchers. In this method, the key is to accurately detect the end point of the stage(b), "nearly horizontal regular fluctuation" characterized by a sudden change in axial strain stiffness curve, and the sudden change signifies crack initiation in rock sample. Finally, the research indicates that the axial strain stiffness curve can provide a mean to identify the crack-initiation stress thresholds in brittle rocks.
基金Under the auspices of National Natural Science Foundation of China(No.41201335)
文摘The Songnen Plain has a typical soda-saline soil, which often shrinks and cracks under natural conditions during water evaporation. This study aims to analyze the relationships between the crack characteristics and the soil properties of soda-saline soils quantitatively, and attempts to establish prediction models for the main soil properties of soda-saline soils based on the results. In order to achieve these objectives, a desiccation cracking test was conducted using 17 soil specimens with different salinity levels under controlled laboratory conditions. Correlation analysis was then performed between the crack characteristics and the soil properties. The results indicate that the crack characteristics can well represent the surface appearances of cracked soils, they also can well distinguish the salinity levels of soda-saline soils while the clay contents and mineralogical compositions of soils are stable. Among the crack characteristics, crack length has the best relationships with the salinity levels of soda-saline soils. Specifically, the crack length has high correlation(R2 > 0.87) with the electrical conductivity(EC), Na+, CO32– and the salinity, it also has reasonable relationship(R2 > 0.68) with HCO3–, this indicates crack length can be well used for the prediction of these properties of soda-saline soils.
基金Project(2017QHZ031)supported by Scientific Research Starting Project of Southwest Petroleum University,ChinaProject(18TD0013)supported by Science and Technology Innovation Team of Education Department of Sichuan for Dynamical System and Its Applications,ChinaProject(2017CXTD02)supported by Youth Science and Technology Innovation Team of Southwest Petroleum University for Nonlinear Systems,China。
文摘Faulted gas reservoirs are very common in reality,where some linear leaky faults divide the gas reservoir into several reservoir regions with distinct physical properties.This kind of gas reservoirs is also known as linear composite(LC)gas reservoirs.Although some analytical/semi-analytical models have been proposed to investigate pressure behaviors of producing wells in LC reservoirs based on the linear composite ideas,almost all of them focus on vertical wells and studies on multiple fractured horizontal wells are rare.After the pressure wave arrives at the leaky fault,pressure behaviors of multiple fractured horizontal wells will be affected by the leaky faults.Understanding the effect of leaky faults on pressure behaviors of multiple fractured horizontal wells is critical to the development design.Therefore,a semi-analytical model of finite-conductivity multiple fractured horizontal(FCMFH)wells in LC gas reservoirs is established based on Laplace-space superposition principle and fracture discrete method.The proposed model is validated against commercial numerical simulator.Type curves are obtained to study pressure characteristics and identify flow regimes.The effects of some parameters on type curves are discussed.The proposed model will have a profound effect on developing analytical/semi-analytical models for other complex well types in LC gas reservoirs.
基金supported by the National High-Technology Research and Development Program of China (No.2007AA09Z317)
文摘Ocean platforms are subjected to a variety of environment loads, such as those from winds, waves, currents, etc. In this study, the torsion problems of a gravity platform column with cracks under wind load were investigated. The colmnn was assumed to be a composite cylinder. Therefore the torsion fracture problem of a composite cylinder was considered, and new boundary integral equations for the Saint-Venant torsion problem of a composite cylinder with curvilinear cracks were derived. The problem was re- duced to solving the boundary integral equations on every boundary. By using the new boundary element method, the torsion prob- lem of the gravity platform colunm with a straight crack under various wind loads was calculated. The obtained results were com- pared with those obtained for a torsion problem of the same column without cracks to prove the applicability of the present method. The comparison showed that the detrimental effect of cracks in a column should be considered in marine engineering.
基金financially supported by the National Natural Science Fund of China (Nos. 51304067 and 51104057)the Fund of Opening Laboratory for Deep Mine Construction, Henan Polytechnic University (No. 2012KF-01)the Education Department of Henan Province (No. 13A440311)
文摘This paper presents a numerical study on the pullout behavior of the rockholt grouted system. Among the complicated failure modes of the rockbolt grouted system, the crack of the grout is concerned here. A tri- linear cohesive zone model (CZM) is used to simulate the inteffacial behavior of rockbolt-grout interface: and a plastic damaged model is adopted for the grout materials. The feasibility of the numerical method is verified by comparing the calculated results with the test observations. The numerical results indicate that two types of cracks of the grout materials can be identified as the inclined crack and the horizontal crack. The inclined crack forms firstly and then the horizontal crack. Both cracks can reduce the interracial shear stress and thus reduce the load transfer efficiency. Further analysis indicates that the crack of the gout material can induce the obvious drops of load capacity, which is not a safe failure mode. This study leads to a better understanding of the mechanism for rockbolt grouted system.
基金supported by the National Natural Science Foundation of China(Grant Nos.51234007&51490654)the National Science Foundation for Young Scientists of China(Grant No.51404291)+1 种基金Fundamental Research Funds for Central Universities(Grant Nos.14CX05024A&14CX02045A)Shandong Provincial Natural Science Foundation(Grant No.ZR2014EEQ010)
文摘In order to investigate propagation regularity of hydraulic fractures in the mode of multi-well pads, numerical modeling of simultaneous hydraulic fracturing of multiple wells was conducted. The mathematical model was established coupling rock deformation with fluid flow in the fractures and wellbores. And then the model was solved by displacement discontinuity method coupling with implicit level set method. The implicit method was based on fracture tip asymptotical solution and used to determine fracture growth length. Simulation results showed that when multiple wells were fractured simultaneously, adjacent fractures might propagate towards each other, showing an effect of attraction other than repulsion. Fracture spacing and well spacing had significant influence on the propagation path and geometry of multiple fractures. Furthermore, when multiple wells were fractured simultaneously, stress reversal regions had a large area, and stress reversal regions were distributed not only in the area between fractures but also on the outside of them. The area of stress reversal regions was related to fracture spacing and well spacing. Results indicated that multi-well fracturing induced larger area of stress reversal regions than one-well fracturing, which was beneficial to generating complex fracture network in unconventional reservoirs.