Split Hopkinson Pressure Bar(SHPB) test was simulated to investigate the distribution of the first principal stress and damage zone of specimen subjected to dynamic compressive load. Numerical models of plate-type spe...Split Hopkinson Pressure Bar(SHPB) test was simulated to investigate the distribution of the first principal stress and damage zone of specimen subjected to dynamic compressive load. Numerical models of plate-type specimen containing cracks with inclined angles of 0°,45° and 90° were also established to investigate the crack propagation and damage evolution under dynamic loading. The results show that the simulation results are in accordance with the failure patterns of specimens in experimental test. The interactions between stress wave and crack with different inclined angles are different; damage usually appears around the crack tips firstly; and then more damage zones develop away from the foregoing damage zone after a period of energy accumulation; eventually,the damage zones run through the specimen in the direction of applied loading and split the specimen into pieces.展开更多
Based on the triaxial testing machine and discrete element method, the effects of embedded crack on rock fragmentation are investigated in laboratory tests and a series of numerical investigations are conducted on the...Based on the triaxial testing machine and discrete element method, the effects of embedded crack on rock fragmentation are investigated in laboratory tests and a series of numerical investigations are conducted on the effects of discontinuities on cutting characteristics and cutting efficiency. In laboratory tests, five propagation patterns of radial cracks are observed. And in the numerical tests, firstly, it is similar to laboratory tests that cracks ahead of cutters mainly initiate from the crushed zone, and some minor cracks will initiate from joints. The cracks initiating from crushed zones will run through the thinner joints while they will be held back by thick joints. Cracks tend to propagate towards the tips of embedded cracks, and minor cracks will initiate from the tips of embedded cracks, which may result in the decrease of specific area, and disturbing layers play as ‘screens', which will prevent cracks from developing greatly. The peak penetration forces, the consumed energy in the penetration process and the uniaxial compression strength will decrease with the increase of discontinuities. The existence of discontinuities will result in the decrease of the cutting efficiency when the spacing between cutters is 70 mm. Some modifications should be made to improve the efficiency when the rocks containing groups of discontinuities are encountered.展开更多
True triaxial rockburst experiments with four different unloading rates were performed on four prism specimens of granite sampled from Beishan, China. The damage evolution in the rockburst test was investigated from t...True triaxial rockburst experiments with four different unloading rates were performed on four prism specimens of granite sampled from Beishan, China. The damage evolution in the rockburst test was investigated from two aspects including fracture surface crack and fragment characteristics. The scanning electron microscopy was used to observe the micro crack information on fragment surface. Combing binarization and box counting dimensions, the fractal dimensions of cracks were obtained. Meanwhile,the fragments were collected and a sieving experiment was conducted. We weighed the fragments qualities, counted the amount of fragments and measured the fragments length, width and thickness.Utilizing four methods to calculate damage fractal dimensions of fragments, the trend of fractal value changing with unloading rates can be roughly described. It can be concluded from these experiments that the fractal dimension either for crack or for fragment holds a decreasing trend with the decreasing unloading rate, indicating a reduction of damage level.展开更多
The flatwise tension(FWT) and single leg bending(SLB) tests were used to investigate the fracture behavior of honeycomb sandwich specimens.In the FWT test,only the interlaminar delamination was observed.The test resul...The flatwise tension(FWT) and single leg bending(SLB) tests were used to investigate the fracture behavior of honeycomb sandwich specimens.In the FWT test,only the interlaminar delamination was observed.The test results show that the interfacial peel strength is higher than the interlaminar peel strength.In terms of SLB experiment,a new fracture mode was found,namely IKP(initiation of interlaminar delamination,kinking into facesheet and propagation of interlaminar delamination).The virtual crack closure technique was applied to separate the values of Mode I and Mode II components of the strain energy release rate in SLB experiment.The finite element analysis result shows that the Mode I strain energy release rate is higher than the Mode II strain energy release rate.To simulate the failure of SLB test of honeycomb sandwich specimens,a new computational model based on the Tsai-Hill failure criterion and the cohesive zone model is proposed.In comparison with experimental results,it can be concluded that the computational model can validly simulate the IKP of a honeycomb sandwich structures with reasonable accuracy.展开更多
Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed und...Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed under cyclic loading. The original columns at lower two stories of the model frame are short columns and they are replaced by the split columns. The hysteresis curves between the horizontal cyclic load and the lateral displacement at the top of the model frame, indicate that under the cyclic loading, the model frame undergoes the process of cracking, yielding, and maximum loading before being destroyed at the ultimate load. They also indicate that the model frame has better ductility, and the ratio of the ultimate displacement to the yielding displacement, reaches 6.0. The yielding process of the model frame shows that for the frame with split columns, plastic hinges are generated at the ends of beams and then the columns begin yielding while the frame still possesses the bearing and deformation capacity. The design idea of directly changing the short column to long one in the reinforced concrete frame may be realized by replacing the short column with the split one.展开更多
基金Projects(50534030, 50674107, 50490274) supported by the National Natural Science Foundation of ChinaProject(06JJ3028) supported by the Provincial Natural Science Foundation of Hunan, China
文摘Split Hopkinson Pressure Bar(SHPB) test was simulated to investigate the distribution of the first principal stress and damage zone of specimen subjected to dynamic compressive load. Numerical models of plate-type specimen containing cracks with inclined angles of 0°,45° and 90° were also established to investigate the crack propagation and damage evolution under dynamic loading. The results show that the simulation results are in accordance with the failure patterns of specimens in experimental test. The interactions between stress wave and crack with different inclined angles are different; damage usually appears around the crack tips firstly; and then more damage zones develop away from the foregoing damage zone after a period of energy accumulation; eventually,the damage zones run through the specimen in the direction of applied loading and split the specimen into pieces.
基金Project(2013CB035401) supported by the National Basic Research Program of ChinaProject(51174228) supported by the National Natural Science Foundation of China+1 种基金Project(71380100003) supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(201304) supported by Open Research Fund of Hunan Province Key Laboratory of Safe Mining Techniques of Coal Mines(Hunan University of Science and Technology),China
文摘Based on the triaxial testing machine and discrete element method, the effects of embedded crack on rock fragmentation are investigated in laboratory tests and a series of numerical investigations are conducted on the effects of discontinuities on cutting characteristics and cutting efficiency. In laboratory tests, five propagation patterns of radial cracks are observed. And in the numerical tests, firstly, it is similar to laboratory tests that cracks ahead of cutters mainly initiate from the crushed zone, and some minor cracks will initiate from joints. The cracks initiating from crushed zones will run through the thinner joints while they will be held back by thick joints. Cracks tend to propagate towards the tips of embedded cracks, and minor cracks will initiate from the tips of embedded cracks, which may result in the decrease of specific area, and disturbing layers play as ‘screens', which will prevent cracks from developing greatly. The peak penetration forces, the consumed energy in the penetration process and the uniaxial compression strength will decrease with the increase of discontinuities. The existence of discontinuities will result in the decrease of the cutting efficiency when the spacing between cutters is 70 mm. Some modifications should be made to improve the efficiency when the rocks containing groups of discontinuities are encountered.
基金supported by the National Key Basic Research Program (No. 2010CB226800)the Innovation Team Development Program of the Ministry of Education (No. IRT0656)the Fundamental Research Funds for the Central Universities (No. 2010YL14)
文摘True triaxial rockburst experiments with four different unloading rates were performed on four prism specimens of granite sampled from Beishan, China. The damage evolution in the rockburst test was investigated from two aspects including fracture surface crack and fragment characteristics. The scanning electron microscopy was used to observe the micro crack information on fragment surface. Combing binarization and box counting dimensions, the fractal dimensions of cracks were obtained. Meanwhile,the fragments were collected and a sieving experiment was conducted. We weighed the fragments qualities, counted the amount of fragments and measured the fragments length, width and thickness.Utilizing four methods to calculate damage fractal dimensions of fragments, the trend of fractal value changing with unloading rates can be roughly described. It can be concluded from these experiments that the fractal dimension either for crack or for fragment holds a decreasing trend with the decreasing unloading rate, indicating a reduction of damage level.
基金Sponsored by the Heilongjiang Postdoctoral Grant and the National Science Foundation for Post-doctoral Scientists of China (Grant No.20080440887)
文摘The flatwise tension(FWT) and single leg bending(SLB) tests were used to investigate the fracture behavior of honeycomb sandwich specimens.In the FWT test,only the interlaminar delamination was observed.The test results show that the interfacial peel strength is higher than the interlaminar peel strength.In terms of SLB experiment,a new fracture mode was found,namely IKP(initiation of interlaminar delamination,kinking into facesheet and propagation of interlaminar delamination).The virtual crack closure technique was applied to separate the values of Mode I and Mode II components of the strain energy release rate in SLB experiment.The finite element analysis result shows that the Mode I strain energy release rate is higher than the Mode II strain energy release rate.To simulate the failure of SLB test of honeycomb sandwich specimens,a new computational model based on the Tsai-Hill failure criterion and the cohesive zone model is proposed.In comparison with experimental results,it can be concluded that the computational model can validly simulate the IKP of a honeycomb sandwich structures with reasonable accuracy.
基金Supported by National Science Fund for Distinguished Young Scholars of China( No. 50425824
文摘Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed under cyclic loading. The original columns at lower two stories of the model frame are short columns and they are replaced by the split columns. The hysteresis curves between the horizontal cyclic load and the lateral displacement at the top of the model frame, indicate that under the cyclic loading, the model frame undergoes the process of cracking, yielding, and maximum loading before being destroyed at the ultimate load. They also indicate that the model frame has better ductility, and the ratio of the ultimate displacement to the yielding displacement, reaches 6.0. The yielding process of the model frame shows that for the frame with split columns, plastic hinges are generated at the ends of beams and then the columns begin yielding while the frame still possesses the bearing and deformation capacity. The design idea of directly changing the short column to long one in the reinforced concrete frame may be realized by replacing the short column with the split one.