The plane crack problem of an orthotropic functionally graded strip under concentrated loads is studied. The edge crack is perpendicular to the boundary and the elastic property of the material is assumed to vary depe...The plane crack problem of an orthotropic functionally graded strip under concentrated loads is studied. The edge crack is perpendicular to the boundary and the elastic property of the material is assumed to vary depending on thickness. By using an integral transform method, the present problem can be reduced to a single integral equation which is solved numerically. The influences of parameters such as the nonhomogeneity constant and the geometry parameters on the stress intensity factors (SIFs) are studied. It is found that the nonhomogeneity constant has important influences on the SIFs.展开更多
文摘The plane crack problem of an orthotropic functionally graded strip under concentrated loads is studied. The edge crack is perpendicular to the boundary and the elastic property of the material is assumed to vary depending on thickness. By using an integral transform method, the present problem can be reduced to a single integral equation which is solved numerically. The influences of parameters such as the nonhomogeneity constant and the geometry parameters on the stress intensity factors (SIFs) are studied. It is found that the nonhomogeneity constant has important influences on the SIFs.