Through rock mechanics test, similar simulation experiment, borehole photographic observation of rock fissure, numerical simulation calculation of plastic zone distribution and deformation monitoring of rock mass duri...Through rock mechanics test, similar simulation experiment, borehole photographic observation of rock fissure, numerical simulation calculation of plastic zone distribution and deformation monitoring of rock mass during undersea mining, the fractal evolution mechanisms of rock fracture in undersea metallic deposits of Sanshandao Gold Mine were studied by fractal theory. The experimental researches on granite mechanics test in undersea deposit indicate that with the increase of load, the granite deformation energy and the fractal dimension of acoustic emission(FDAE) increase gradually. However, after reaching the peak stress of specimen, the fractal dimensions of acoustic emission(FDAEs) decrease and the granite specimen fails. Therefore, the fractal dimension evolution of rock failure can be divided into four stages, which are fissure inoculation stage, fissure growth stage, fissure expansion stage and fracture instability stage, respectively. By calculating and analyzing the damage photographs of rock specimens in Sanshandao Gold Mine, the fractal dimension of rock fissure is 1.4514, which is close to the average value of FDAE during granite destruction, i.e., 1.4693. Similar simulation experiments of undersea mining show that with the excavation proceeding, the FDAE in rock stratum increases gradually, and when the thickness of the isolation roof is less than 40 m, the FDAE begins to decrease, and meanwhile the sign of water inrush emerges. The numerical simulation researches on the plastic zone distribution of undersea mining in Sanshandao Gold Mine indicate that the fractal dimension of plastic zone(FDPZ) where the failure characteristics occur is 1.4598, close to the result of similar simulation experiment of 1.4364, which shows the sign of water inrush. Meanwhile, the thickness of the isolation roof for undersea mining should be more than 40 m, which is consistent with the results of similar simulation experiment. In Sanshandao Gold Mine, the rock fissures in undersea mining were observed by borehole photography and the rock mass deformation was monitored by multi-point displacement meters, and at the same time the fractal dimensions of strata borehole fissure distribution and energy release ratio(ERR) of rock mass were calculated by fractal principle, which are 1.2328 and 1.2685, respectively. The results demonstrate that rock deformation and fissure propagation are both in the second stage of fissure growth, and have not reached the fourth stage of fracture instability. Therefore, the conclusion can be obtained that the undersea mining in Sanshandao Gold Mine is safe at present.展开更多
AIM: To study the method of dissociation, culture and investigate its morphologic changes in vitro of interstitial cells of Cajal (ICC).METHODS: Enzymatic digestion and Ficoll density centrifugation were used to disso...AIM: To study the method of dissociation, culture and investigate its morphologic changes in vitro of interstitial cells of Cajal (ICC).METHODS: Enzymatic digestion and Ficoll density centrifugation were used to dissociate ICC from the ileal segment of mice. Factors including contamination, Ca2+, Mg2+ and collagenase, and stem cell factor, etc., were investigated.ACK2, the antibody of c-kit, was used to identify the cultured ICC. Both light microscope and fluorescence microscope were used to observe the changes of ICC in vitro.RESULTS: The method for dissociation and culture of ICC in vitro was successfully established. After 24 h, cultured ICC exhibited a few axis-cylinders, and longer axis-cylinders were observed to form synapse of each other after 3 d. More widespread connections formed within 7 d in vitro. The changes of its morphologic character were obvious within 7 d; however, there were no obvious morphologic changes after 30 d.CONCLUSION: Many factors can influence the dissociation and culture of ICC.展开更多
Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network mode...Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network model and measured data,a 3-D fracture network dynamic modeling method based on error analysis was proposed.Firstly,errors of four fracture volume density estimation methods(proposed by ODA,KULATILAKE,MAULDON,and SONG)and that of four fracture size estimation methods(proposed by EINSTEIN,SONG and TONON)were respectively compared,and the optimal methods were determined.Additionally,error index representing the deviation between fracture network model and measured data was established with integrated use of fractal dimension and relative absolute error(RAE).On this basis,the downhill simplex method was used to build the dynamic modeling method,which takes the minimum of error index as objective function and dynamically adjusts the fracture density and size parameters to correct the error index.Finally,the 3-D fracture network model could be obtained which meets the requirements.The proposed method was applied for 3-D fractures simulation in Miao Wei hydropower project in China for feasibility verification and the error index reduced from 2.618 to 0.337.展开更多
In order to study the evolution laws during the development process of the coal face overburden rock mining-induced fissure,we studied the process of evolution of overburden rock mining-induced fissures and dynamicall...In order to study the evolution laws during the development process of the coal face overburden rock mining-induced fissure,we studied the process of evolution of overburden rock mining-induced fissures and dynamically quantitatively described its fractal laws,based on the high-precision microseismic monitoring method and the nonlinear Fractal Geometry Theory.The results show that:the overburden rock mining-induced fissure fractal dimension experiences two periodic change processes with the coal face advance,namely a Small→ Big→ Small process,which tends to be stable;the functional relationship between the extraction step distance and the overburden rock mining-induced fissure fractal dimension is a cubic curve.The results suggest that the fractal dimension reflects the evolution characteristics of the overburden rock mining-induced fissure,which can be used as an evaluation index of the stability of the overburden rock strata,and it provides theoretical guidance for stability analysis of the overburden rock strata,goaf roof control and the support movements in the mining face.展开更多
The structure of fractures in nature rock appears irregular and induces complicated seepage flow behavior.The mechanism and quantitative description of fluid flow through rock fractures is a difficult subject that has...The structure of fractures in nature rock appears irregular and induces complicated seepage flow behavior.The mechanism and quantitative description of fluid flow through rock fractures is a difficult subject that has been greatly concerned in the fields of geotechnical,mining,geological,and petroleum engineering.In order to probe the mechanism of fluid flow and the effects of rough structures,we conducted a few laboratory tests of fluid flow through single rough fractures,in which the Weierstrass-Mandelbrot fractal function and PMMA material were employed to produce the fracture models with various fractal roughnesses.A high-speed video camera was employed to record the fluid flow through the entire single rough fracture with a constant hydraulic pressure.The properties of fluid flow varying with the fracture roughness and the influences of the rough structure were analyzed.The components of flow resistance of a single rough fracture were discussed.A fractal model was proposed to relate the fluid resistance to the fracture roughness.A fractal equivalent permeability coefficient of a single rough fracture was formulated.This study aims to provide an experimental basis and reference for better understanding and quantitatively relating the fluid flow properties to the structures of rock fractures.展开更多
The study on seepage flow passing through single fractures is essential and critical for understanding of the law of seepage flow passing through fracture networks and the coupling mechanisms of seepage field and stre...The study on seepage flow passing through single fractures is essential and critical for understanding of the law of seepage flow passing through fracture networks and the coupling mechanisms of seepage field and stress field in rock masses.By using the fractal interpolation to reconstruct a natural coarse fracture,as well as taking into account the microstructure of the fracture,the numerical simulation of seepage flow passing through the coarse fractures with two distinct vertical scaling factors is conducted based on the MRT-LBM model of the lattice Boltzmann method.Then,after obtaining the length of the preferential flow pathway,the permeability of the two kinds of fractures is estimated respectively.In view of difficulties in locating the preferential flow pathway of natural fracture networks,by numerical tests a transect permeability weighted algorithm for estimating the fracture network permeability is proposed.The algorithm is not specific to one or more particular preferential flow pathways,but considers the contribution of each section to hinder the fluid passing through the medium.In order to apply the new algorithm,by capturing the structure of fracture networks based on the image-processing technique,the numerical simulations of seepage flow passing through two groups of natural fracture networks is carried out,the permeability is forecasted and the partial flows are reproduced for both cases.It is found that the preferential flow pathway emerges at the beginning of evolution,then is strengthened subsequently,and finally reaches a steady status.Furthermore,by using the proposed method some details on local flow can be clearly observed such as backflows and vortices at local branches can exist simultaneously and so forth,suggesting the validness of the proposed method for multiscale simulations of seepage flow.展开更多
基金Project(2019sdzy05)supported by the Major Scientific and Technological Innovation Project of Shandong Province,ChinaProjects(51674288,51974359)supported by the National Natural Science Foundation of China。
文摘Through rock mechanics test, similar simulation experiment, borehole photographic observation of rock fissure, numerical simulation calculation of plastic zone distribution and deformation monitoring of rock mass during undersea mining, the fractal evolution mechanisms of rock fracture in undersea metallic deposits of Sanshandao Gold Mine were studied by fractal theory. The experimental researches on granite mechanics test in undersea deposit indicate that with the increase of load, the granite deformation energy and the fractal dimension of acoustic emission(FDAE) increase gradually. However, after reaching the peak stress of specimen, the fractal dimensions of acoustic emission(FDAEs) decrease and the granite specimen fails. Therefore, the fractal dimension evolution of rock failure can be divided into four stages, which are fissure inoculation stage, fissure growth stage, fissure expansion stage and fracture instability stage, respectively. By calculating and analyzing the damage photographs of rock specimens in Sanshandao Gold Mine, the fractal dimension of rock fissure is 1.4514, which is close to the average value of FDAE during granite destruction, i.e., 1.4693. Similar simulation experiments of undersea mining show that with the excavation proceeding, the FDAE in rock stratum increases gradually, and when the thickness of the isolation roof is less than 40 m, the FDAE begins to decrease, and meanwhile the sign of water inrush emerges. The numerical simulation researches on the plastic zone distribution of undersea mining in Sanshandao Gold Mine indicate that the fractal dimension of plastic zone(FDPZ) where the failure characteristics occur is 1.4598, close to the result of similar simulation experiment of 1.4364, which shows the sign of water inrush. Meanwhile, the thickness of the isolation roof for undersea mining should be more than 40 m, which is consistent with the results of similar simulation experiment. In Sanshandao Gold Mine, the rock fissures in undersea mining were observed by borehole photography and the rock mass deformation was monitored by multi-point displacement meters, and at the same time the fractal dimensions of strata borehole fissure distribution and energy release ratio(ERR) of rock mass were calculated by fractal principle, which are 1.2328 and 1.2685, respectively. The results demonstrate that rock deformation and fissure propagation are both in the second stage of fissure growth, and have not reached the fourth stage of fracture instability. Therefore, the conclusion can be obtained that the undersea mining in Sanshandao Gold Mine is safe at present.
基金Supported by the National Natural Science Foundation of China, No. 30300156
文摘AIM: To study the method of dissociation, culture and investigate its morphologic changes in vitro of interstitial cells of Cajal (ICC).METHODS: Enzymatic digestion and Ficoll density centrifugation were used to dissociate ICC from the ileal segment of mice. Factors including contamination, Ca2+, Mg2+ and collagenase, and stem cell factor, etc., were investigated.ACK2, the antibody of c-kit, was used to identify the cultured ICC. Both light microscope and fluorescence microscope were used to observe the changes of ICC in vitro.RESULTS: The method for dissociation and culture of ICC in vitro was successfully established. After 24 h, cultured ICC exhibited a few axis-cylinders, and longer axis-cylinders were observed to form synapse of each other after 3 d. More widespread connections formed within 7 d in vitro. The changes of its morphologic character were obvious within 7 d; however, there were no obvious morphologic changes after 30 d.CONCLUSION: Many factors can influence the dissociation and culture of ICC.
基金Project(51321065)supported by the Innovative Research Groups of the National Natural Science Foundation of ChinaProject(2013CB035904)supported by the National Basic Research Program of China(973 Program)Project(51439005)supported by the National Natural Science Foundation of China
文摘Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network model and measured data,a 3-D fracture network dynamic modeling method based on error analysis was proposed.Firstly,errors of four fracture volume density estimation methods(proposed by ODA,KULATILAKE,MAULDON,and SONG)and that of four fracture size estimation methods(proposed by EINSTEIN,SONG and TONON)were respectively compared,and the optimal methods were determined.Additionally,error index representing the deviation between fracture network model and measured data was established with integrated use of fractal dimension and relative absolute error(RAE).On this basis,the downhill simplex method was used to build the dynamic modeling method,which takes the minimum of error index as objective function and dynamically adjusts the fracture density and size parameters to correct the error index.Finally,the 3-D fracture network model could be obtained which meets the requirements.The proposed method was applied for 3-D fractures simulation in Miao Wei hydropower project in China for feasibility verification and the error index reduced from 2.618 to 0.337.
基金Financial support for this work,provided by the National Natural Science Foundation of China(No.51304154)the Natural Science Foundation Anhui Province(No.1408085MKL92)
文摘In order to study the evolution laws during the development process of the coal face overburden rock mining-induced fissure,we studied the process of evolution of overburden rock mining-induced fissures and dynamically quantitatively described its fractal laws,based on the high-precision microseismic monitoring method and the nonlinear Fractal Geometry Theory.The results show that:the overburden rock mining-induced fissure fractal dimension experiences two periodic change processes with the coal face advance,namely a Small→ Big→ Small process,which tends to be stable;the functional relationship between the extraction step distance and the overburden rock mining-induced fissure fractal dimension is a cubic curve.The results suggest that the fractal dimension reflects the evolution characteristics of the overburden rock mining-induced fissure,which can be used as an evaluation index of the stability of the overburden rock strata,and it provides theoretical guidance for stability analysis of the overburden rock strata,goaf roof control and the support movements in the mining face.
基金supported by the National Science Funds for Distinguished Young Scholar of China (Grant No. 51125017)the National Basic Research Program of China (Grant Nos. 2010CB226804,2011CB201201)+2 种基金the National Natural Science Foundation of China (Grant No. 50974125)the International Cooperation Project of Ministry of Science & Technology of China (Grant No. 2012DFA60760-2)NSFC International Cooperation and Exchange Program (Grant No. 51120145001)
文摘The structure of fractures in nature rock appears irregular and induces complicated seepage flow behavior.The mechanism and quantitative description of fluid flow through rock fractures is a difficult subject that has been greatly concerned in the fields of geotechnical,mining,geological,and petroleum engineering.In order to probe the mechanism of fluid flow and the effects of rough structures,we conducted a few laboratory tests of fluid flow through single rough fractures,in which the Weierstrass-Mandelbrot fractal function and PMMA material were employed to produce the fracture models with various fractal roughnesses.A high-speed video camera was employed to record the fluid flow through the entire single rough fracture with a constant hydraulic pressure.The properties of fluid flow varying with the fracture roughness and the influences of the rough structure were analyzed.The components of flow resistance of a single rough fracture were discussed.A fractal model was proposed to relate the fluid resistance to the fracture roughness.A fractal equivalent permeability coefficient of a single rough fracture was formulated.This study aims to provide an experimental basis and reference for better understanding and quantitatively relating the fluid flow properties to the structures of rock fractures.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2011CB013505)the National Natural Science Funds for Distinguished Young Scholar(Grant No.50925933)
文摘The study on seepage flow passing through single fractures is essential and critical for understanding of the law of seepage flow passing through fracture networks and the coupling mechanisms of seepage field and stress field in rock masses.By using the fractal interpolation to reconstruct a natural coarse fracture,as well as taking into account the microstructure of the fracture,the numerical simulation of seepage flow passing through the coarse fractures with two distinct vertical scaling factors is conducted based on the MRT-LBM model of the lattice Boltzmann method.Then,after obtaining the length of the preferential flow pathway,the permeability of the two kinds of fractures is estimated respectively.In view of difficulties in locating the preferential flow pathway of natural fracture networks,by numerical tests a transect permeability weighted algorithm for estimating the fracture network permeability is proposed.The algorithm is not specific to one or more particular preferential flow pathways,but considers the contribution of each section to hinder the fluid passing through the medium.In order to apply the new algorithm,by capturing the structure of fracture networks based on the image-processing technique,the numerical simulations of seepage flow passing through two groups of natural fracture networks is carried out,the permeability is forecasted and the partial flows are reproduced for both cases.It is found that the preferential flow pathway emerges at the beginning of evolution,then is strengthened subsequently,and finally reaches a steady status.Furthermore,by using the proposed method some details on local flow can be clearly observed such as backflows and vortices at local branches can exist simultaneously and so forth,suggesting the validness of the proposed method for multiscale simulations of seepage flow.