为研究正交与非正交稀疏裂隙岩体水流-传热对温度的影响,采用三维离散单元法程序(3 Dimension Distinct Element Code,简称3DEC)分析正交与非正交稀疏裂隙岩体水流-传热对温度场影响规律。研究表明:正交裂隙水流显著改变了岩体温度场;...为研究正交与非正交稀疏裂隙岩体水流-传热对温度的影响,采用三维离散单元法程序(3 Dimension Distinct Element Code,简称3DEC)分析正交与非正交稀疏裂隙岩体水流-传热对温度场影响规律。研究表明:正交裂隙水流显著改变了岩体温度场;由于交叉裂隙水流动传热,致使裂隙水流动区域等温线出现明显的断续态,从瞬态到稳态,岩体温度升高,温度梯度逐渐减小。对比正交裂隙岩体模型,当横裂隙向下倾斜,纵裂隙靠近热源时,裂隙岩体温度升高;对比非正交裂隙岩体模型,当横裂隙倾斜度不变,纵裂隙远离热源时,裂隙岩体温度降低。非正交裂隙出水口水温高于正交裂隙出水口水温,纵裂隙靠近热源时裂隙出水口水温高于纵裂隙远离热源时裂隙出水口水温;非正交裂隙岩体模型比正交裂隙岩体模型达到稳态所需要的时间更短,纵裂隙靠近热源时的模型比纵裂隙远离热源时的模型达到稳态所需时间更长。展开更多
To solve the problem of water loss during mining of shallow, buried coal seams, we have first analyzed the mechanism and suitability of solid-liquid coupling, i.e., we used the FLUID-MECHANICS system of 3-Dimensional ...To solve the problem of water loss during mining of shallow, buried coal seams, we have first analyzed the mechanism and suitability of solid-liquid coupling, i.e., we used the FLUID-MECHANICS system of 3-Dimensional Distinct Element Code (3DEC) in simulating dynamic water crannies in overlying strata, under mining conditions of a large longwall coalface. Next the dynamic initiation of a water cranny, its propagation and close phases were studied with 3DEC, along with the overlying strata breakage and recombination as the mining space of the shallow, buried coal seam increased. Combined with the change in the stress and displacement fields, the distribution features of the mining cranny were systematically studied. The effect of regularities and their effective measures of local filling and mine slicing technology in controlling mine crannies were investigated and the potential danger areas of water loss identified. Our results can be applied to decrease water loss during the exploitation of shallow, buried coal seams with a thin bedrock. The results also prove that 3DEC is a credible numerical analytical method to predict initiations of dynamic water crannies, their propagation, their closure phases and other concomitant hazards.展开更多
文摘为研究正交与非正交稀疏裂隙岩体水流-传热对温度的影响,采用三维离散单元法程序(3 Dimension Distinct Element Code,简称3DEC)分析正交与非正交稀疏裂隙岩体水流-传热对温度场影响规律。研究表明:正交裂隙水流显著改变了岩体温度场;由于交叉裂隙水流动传热,致使裂隙水流动区域等温线出现明显的断续态,从瞬态到稳态,岩体温度升高,温度梯度逐渐减小。对比正交裂隙岩体模型,当横裂隙向下倾斜,纵裂隙靠近热源时,裂隙岩体温度升高;对比非正交裂隙岩体模型,当横裂隙倾斜度不变,纵裂隙远离热源时,裂隙岩体温度降低。非正交裂隙出水口水温高于正交裂隙出水口水温,纵裂隙靠近热源时裂隙出水口水温高于纵裂隙远离热源时裂隙出水口水温;非正交裂隙岩体模型比正交裂隙岩体模型达到稳态所需要的时间更短,纵裂隙靠近热源时的模型比纵裂隙远离热源时的模型达到稳态所需时间更长。
基金Project supported by the National Natural Science Foundation of China(No.51378055)the Research Fund for the Doctoral Program of Higher Education of China(No.20120009110022)the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(No.2013 BAB10B06)
基金Projects 50374065, 50490273, 50474068 supported by the National Natural Science Foundation of ChinaNCET-05-0480 by the New Century Excellent Talentsin University+1 种基金07KF09 by the 2007 Research Fund of the State Key Laboratory of Coal Resources and Mine SafetyCUMT and 2005B002 by the Scientific Re-search Foundation of China University of Mining & Technology
文摘To solve the problem of water loss during mining of shallow, buried coal seams, we have first analyzed the mechanism and suitability of solid-liquid coupling, i.e., we used the FLUID-MECHANICS system of 3-Dimensional Distinct Element Code (3DEC) in simulating dynamic water crannies in overlying strata, under mining conditions of a large longwall coalface. Next the dynamic initiation of a water cranny, its propagation and close phases were studied with 3DEC, along with the overlying strata breakage and recombination as the mining space of the shallow, buried coal seam increased. Combined with the change in the stress and displacement fields, the distribution features of the mining cranny were systematically studied. The effect of regularities and their effective measures of local filling and mine slicing technology in controlling mine crannies were investigated and the potential danger areas of water loss identified. Our results can be applied to decrease water loss during the exploitation of shallow, buried coal seams with a thin bedrock. The results also prove that 3DEC is a credible numerical analytical method to predict initiations of dynamic water crannies, their propagation, their closure phases and other concomitant hazards.