Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network mode...Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network model and measured data,a 3-D fracture network dynamic modeling method based on error analysis was proposed.Firstly,errors of four fracture volume density estimation methods(proposed by ODA,KULATILAKE,MAULDON,and SONG)and that of four fracture size estimation methods(proposed by EINSTEIN,SONG and TONON)were respectively compared,and the optimal methods were determined.Additionally,error index representing the deviation between fracture network model and measured data was established with integrated use of fractal dimension and relative absolute error(RAE).On this basis,the downhill simplex method was used to build the dynamic modeling method,which takes the minimum of error index as objective function and dynamically adjusts the fracture density and size parameters to correct the error index.Finally,the 3-D fracture network model could be obtained which meets the requirements.The proposed method was applied for 3-D fractures simulation in Miao Wei hydropower project in China for feasibility verification and the error index reduced from 2.618 to 0.337.展开更多
The study on seepage flow passing through single fractures is essential and critical for understanding of the law of seepage flow passing through fracture networks and the coupling mechanisms of seepage field and stre...The study on seepage flow passing through single fractures is essential and critical for understanding of the law of seepage flow passing through fracture networks and the coupling mechanisms of seepage field and stress field in rock masses.By using the fractal interpolation to reconstruct a natural coarse fracture,as well as taking into account the microstructure of the fracture,the numerical simulation of seepage flow passing through the coarse fractures with two distinct vertical scaling factors is conducted based on the MRT-LBM model of the lattice Boltzmann method.Then,after obtaining the length of the preferential flow pathway,the permeability of the two kinds of fractures is estimated respectively.In view of difficulties in locating the preferential flow pathway of natural fracture networks,by numerical tests a transect permeability weighted algorithm for estimating the fracture network permeability is proposed.The algorithm is not specific to one or more particular preferential flow pathways,but considers the contribution of each section to hinder the fluid passing through the medium.In order to apply the new algorithm,by capturing the structure of fracture networks based on the image-processing technique,the numerical simulations of seepage flow passing through two groups of natural fracture networks is carried out,the permeability is forecasted and the partial flows are reproduced for both cases.It is found that the preferential flow pathway emerges at the beginning of evolution,then is strengthened subsequently,and finally reaches a steady status.Furthermore,by using the proposed method some details on local flow can be clearly observed such as backflows and vortices at local branches can exist simultaneously and so forth,suggesting the validness of the proposed method for multiscale simulations of seepage flow.展开更多
Darcy's law only applying to the flow domain is extended to the entire fracture network domain including the dry domain.The partial differential equation(PDE) formulation for unconfined seepage flow problems for d...Darcy's law only applying to the flow domain is extended to the entire fracture network domain including the dry domain.The partial differential equation(PDE) formulation for unconfined seepage flow problems for discrete fracture network is established,in which a boundary condition of Signorini's type is prescribed over the potential seepage surfaces.In order to reduce the difficulty in selecting trial functions,a new variational inequality formulation is presented and mathematically proved to be equivalent to the PDE formulation.The numerical procedure based on the VI formulation is proposed and the corresponding algorithm has been developed.Since a continuous penalized Heaviside function is introduced to replace a jump function in finite element analysis,oscillation of numerical integration for facture elements cut by the free surface is eliminated and stability of numerical solution is assured.The numerical results from two typical examples demonstrate,on the one hand the effectiveness and robustness of the proposed method,and on the other hand the capability of predicting main seepage pathways in fractured rocks and flow rates out of the drainage system,which is very important for performance assessments and design optimization of complex drainage system.展开更多
The space block search technology is used to determine a connected three-dimensional fracture network in polygonal shapes,i.e.,seepage paths.After triangulation on these polygons,a finite element mesh for 3D fracture ...The space block search technology is used to determine a connected three-dimensional fracture network in polygonal shapes,i.e.,seepage paths.After triangulation on these polygons,a finite element mesh for 3D fracture network seepage is obtained.Through introduction of the generalized Darcy's law,conservative equations for both fracture surface and fracture interactions are established.Combined with the boundary condition of Signorini's type,a partial differential equation(PDE) formulation is presented for the whole domain concerned.To solve this problem efficiently,an equivalent variational inequality(VI) formulation is given.With the penalized Heaviside function,a finite element procedure for unconfined seepage problem in 3D fracture network is developed.Through an example in a homogeneous rectangular dam,validity of the algorithm is verified.The analysis of an unconfined seepage problem in a complex fracture network shows that the proposed algorithm is very applicable to complex three-dimensional problems,and is effective in describing some interesting phenomenon usually encountered in practice,such as "preferential flow".展开更多
Oil-gas reservoir space types involving spherulite in pyromeride rocks are common in the Lower Cretaceous Shangkuli Formation, the Hailar Basin, China. The main types include interspherulite fissures, interlayer fissu...Oil-gas reservoir space types involving spherulite in pyromeride rocks are common in the Lower Cretaceous Shangkuli Formation, the Hailar Basin, China. The main types include interspherulite fissures, interlayer fissures, intraspherulite concentric rings and net microcracks, cavity pores, dissolution pores, and devitrification pores. The first two were found to restrict the effective plane porosity of interspherulite. Devitrification microporosities, microcracks, cavity pores, and spherulite diameter influence the effective plane porosity of intraspherulite. The degree of dissolution is determined by the degree of development and the type of intraspherulite microcracks. Another important role of ring and net microcracks is to connect devitrification pores to form a pore and fissure network. Finally, chilling contraction plays an important role in the form and development of interspherulite fissures, microcracks, and cavity pores. The diameter of spherulite restricts chilling contraction, especially when the diameter is between the common spherulites and lithophysae, thus benefiting microcrack and cavity pore formation. To summarize, devitrification microporosities represent excellent oil reservoir space, while offering micro-channels for the movement of formation water and organic fluids. However, the inclusion of microcracks improves this capacity.展开更多
The study has analyzed the relationship between the water-drainage sluice process of reservoir, stress triggers and shadows of earthquake and porosity variability of fault slip zone. First, the pore pressure, pressure...The study has analyzed the relationship between the water-drainage sluice process of reservoir, stress triggers and shadows of earthquake and porosity variability of fault slip zone. First, the pore pressure, pressure gradient, viscous stress and Reynolds stress to reservoir-earthquake fault slip problem are analyzed, and these are un-negligible factors of the extended coulomb failure stress under ultra-high temperature and pressure condition. Second, the porosity tensor and permeability tensor are studied, the relationship between Zipingpu reservoir and Longmenshan slip has been analyzed, and the extended viscous stress and Reynolds stress as function of time and infiltration process are obtained. Last, some primary conclusions about the flow-solid coupled facture mechanism to the Zipingpu reservoir and Longmenshan slip problem are presented, which can help understand the flow-solid coupled facture mechanism of reservoir-coseismic fault slip problem.展开更多
基金Project(51321065)supported by the Innovative Research Groups of the National Natural Science Foundation of ChinaProject(2013CB035904)supported by the National Basic Research Program of China(973 Program)Project(51439005)supported by the National Natural Science Foundation of China
文摘Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network model and measured data,a 3-D fracture network dynamic modeling method based on error analysis was proposed.Firstly,errors of four fracture volume density estimation methods(proposed by ODA,KULATILAKE,MAULDON,and SONG)and that of four fracture size estimation methods(proposed by EINSTEIN,SONG and TONON)were respectively compared,and the optimal methods were determined.Additionally,error index representing the deviation between fracture network model and measured data was established with integrated use of fractal dimension and relative absolute error(RAE).On this basis,the downhill simplex method was used to build the dynamic modeling method,which takes the minimum of error index as objective function and dynamically adjusts the fracture density and size parameters to correct the error index.Finally,the 3-D fracture network model could be obtained which meets the requirements.The proposed method was applied for 3-D fractures simulation in Miao Wei hydropower project in China for feasibility verification and the error index reduced from 2.618 to 0.337.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2011CB013505)the National Natural Science Funds for Distinguished Young Scholar(Grant No.50925933)
文摘The study on seepage flow passing through single fractures is essential and critical for understanding of the law of seepage flow passing through fracture networks and the coupling mechanisms of seepage field and stress field in rock masses.By using the fractal interpolation to reconstruct a natural coarse fracture,as well as taking into account the microstructure of the fracture,the numerical simulation of seepage flow passing through the coarse fractures with two distinct vertical scaling factors is conducted based on the MRT-LBM model of the lattice Boltzmann method.Then,after obtaining the length of the preferential flow pathway,the permeability of the two kinds of fractures is estimated respectively.In view of difficulties in locating the preferential flow pathway of natural fracture networks,by numerical tests a transect permeability weighted algorithm for estimating the fracture network permeability is proposed.The algorithm is not specific to one or more particular preferential flow pathways,but considers the contribution of each section to hinder the fluid passing through the medium.In order to apply the new algorithm,by capturing the structure of fracture networks based on the image-processing technique,the numerical simulations of seepage flow passing through two groups of natural fracture networks is carried out,the permeability is forecasted and the partial flows are reproduced for both cases.It is found that the preferential flow pathway emerges at the beginning of evolution,then is strengthened subsequently,and finally reaches a steady status.Furthermore,by using the proposed method some details on local flow can be clearly observed such as backflows and vortices at local branches can exist simultaneously and so forth,suggesting the validness of the proposed method for multiscale simulations of seepage flow.
基金supported by the National Natural Science Foundation of China (Grant No. 51079110)the National Basic Research Program of China ("973" Project) (Grant No. 2011CB013506)
文摘Darcy's law only applying to the flow domain is extended to the entire fracture network domain including the dry domain.The partial differential equation(PDE) formulation for unconfined seepage flow problems for discrete fracture network is established,in which a boundary condition of Signorini's type is prescribed over the potential seepage surfaces.In order to reduce the difficulty in selecting trial functions,a new variational inequality formulation is presented and mathematically proved to be equivalent to the PDE formulation.The numerical procedure based on the VI formulation is proposed and the corresponding algorithm has been developed.Since a continuous penalized Heaviside function is introduced to replace a jump function in finite element analysis,oscillation of numerical integration for facture elements cut by the free surface is eliminated and stability of numerical solution is assured.The numerical results from two typical examples demonstrate,on the one hand the effectiveness and robustness of the proposed method,and on the other hand the capability of predicting main seepage pathways in fractured rocks and flow rates out of the drainage system,which is very important for performance assessments and design optimization of complex drainage system.
基金supported by the National Natural Science Foundation of China(Grant No.51079110)the National Basic Research Program of China("973"Project)(Grant No.2011CB013506)
文摘The space block search technology is used to determine a connected three-dimensional fracture network in polygonal shapes,i.e.,seepage paths.After triangulation on these polygons,a finite element mesh for 3D fracture network seepage is obtained.Through introduction of the generalized Darcy's law,conservative equations for both fracture surface and fracture interactions are established.Combined with the boundary condition of Signorini's type,a partial differential equation(PDE) formulation is presented for the whole domain concerned.To solve this problem efficiently,an equivalent variational inequality(VI) formulation is given.With the penalized Heaviside function,a finite element procedure for unconfined seepage problem in 3D fracture network is developed.Through an example in a homogeneous rectangular dam,validity of the algorithm is verified.The analysis of an unconfined seepage problem in a complex fracture network shows that the proposed algorithm is very applicable to complex three-dimensional problems,and is effective in describing some interesting phenomenon usually encountered in practice,such as "preferential flow".
基金supported by National Basic Research Program of China (Grant No. 2009CB219305)
文摘Oil-gas reservoir space types involving spherulite in pyromeride rocks are common in the Lower Cretaceous Shangkuli Formation, the Hailar Basin, China. The main types include interspherulite fissures, interlayer fissures, intraspherulite concentric rings and net microcracks, cavity pores, dissolution pores, and devitrification pores. The first two were found to restrict the effective plane porosity of interspherulite. Devitrification microporosities, microcracks, cavity pores, and spherulite diameter influence the effective plane porosity of intraspherulite. The degree of dissolution is determined by the degree of development and the type of intraspherulite microcracks. Another important role of ring and net microcracks is to connect devitrification pores to form a pore and fissure network. Finally, chilling contraction plays an important role in the form and development of interspherulite fissures, microcracks, and cavity pores. The diameter of spherulite restricts chilling contraction, especially when the diameter is between the common spherulites and lithophysae, thus benefiting microcrack and cavity pore formation. To summarize, devitrification microporosities represent excellent oil reservoir space, while offering micro-channels for the movement of formation water and organic fluids. However, the inclusion of microcracks improves this capacity.
基金supported by Project SinoProbe-07 of Chinathe National Natural Science Foundation of China (Grant No. D0408/4097409)+1 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-YW-N42)the Key Important Project of the National Natural Science Foundation of China (Grant No. 10734070)
文摘The study has analyzed the relationship between the water-drainage sluice process of reservoir, stress triggers and shadows of earthquake and porosity variability of fault slip zone. First, the pore pressure, pressure gradient, viscous stress and Reynolds stress to reservoir-earthquake fault slip problem are analyzed, and these are un-negligible factors of the extended coulomb failure stress under ultra-high temperature and pressure condition. Second, the porosity tensor and permeability tensor are studied, the relationship between Zipingpu reservoir and Longmenshan slip has been analyzed, and the extended viscous stress and Reynolds stress as function of time and infiltration process are obtained. Last, some primary conclusions about the flow-solid coupled facture mechanism to the Zipingpu reservoir and Longmenshan slip problem are presented, which can help understand the flow-solid coupled facture mechanism of reservoir-coseismic fault slip problem.