An airbag is an effective protective device for vehicle occupant safety, but may cause unexpected injury from the excessive energy of ignition when it is deployed, This paper focuses on the design of a new tubular dri...An airbag is an effective protective device for vehicle occupant safety, but may cause unexpected injury from the excessive energy of ignition when it is deployed, This paper focuses on the design of a new tubular driver airhag from the perspective of reducing the dosage of gas generant, Three different dummies were selected for computer simulation to investigate the stiffness and protection performance of the new airhag, Next, a multi-objective optimization of the 50th percentile dummy was conducted, The results show that the static volume of the new airhag is only about 113 of the volume of an ordinary one, and the injury value of each type of dummy can meet legal requirements while reducing the gas dosage by at least 30%, The combined injury index (Pcomb) decreases by 22% and the gas dosage is reduced by 32% after optimization, This study demonstrates that the new tubular driver airbag has great potential for protection in terms of reducing the gas dosage,展开更多
A method for optimizing automotive doors under multiple criteria involving the side impact, stiffness, natural frequency, and structure weight is presented. Metamodeling technique is employed to construct approximatio...A method for optimizing automotive doors under multiple criteria involving the side impact, stiffness, natural frequency, and structure weight is presented. Metamodeling technique is employed to construct approximations to replace the high computational simulation models. The approximating functions for stiffness and natural frequency are constructed using Taylor series approximation. Three popular approximation techniques,i.e.polynomial response surface (PRS), stepwise regression (SR), and Kriging are studied on their accuracy in the construction of side impact functions. Uniform design is employed to sample the design space of the door impact analysis. The optimization problem is solved by a multi-objective genetic algorithm. It is found that SR technique is superior to PRS and Kriging techniques in terms of accuracy in this study. The numerical results demonstrate that the method successfully generates a well-spread Pareto optimal set. From this Pareto optimal set, decision makers can select the most suitable design according to the vehicle program and its application.展开更多
A new transportation technology known as personal rapid transit (PRT) is being developed by multiple different companies around the world, and one system is under commercial operations in the United Kingdom. Each de...A new transportation technology known as personal rapid transit (PRT) is being developed by multiple different companies around the world, and one system is under commercial operations in the United Kingdom. Each design is different, but they all share a need to operate many automated transit vehicles at very close headways. Safe operation will require a level of control an order of magnitude above any current transit system. As a result, new techniques will be needed for the development and testing of the mechanical and control systems. In this paper an apparatus for developing and testing a PRT vehicle control scheme is demonstrated. This system is composed of independent modules that represent virtual vehicles, a central control system, a man-machine interface and a monitoring device. It can be used to implement and to evaluate the designed vehicle control algorithm. The vehicle control algorithm is designed and simulated in a combined simulation platform that consists of Matlab/Simulink and Labview Simulation Interface Toolkit. Simple operational scenarios are proposed for the testing of the proposed vehicle control apparatus.展开更多
An armored face conveyor(AFC) is a key piece of equipment for a fully mechanized long-wall mining system and is currently the only means for transporting bulk material in hard coal mines. To date, the AFC power train ...An armored face conveyor(AFC) is a key piece of equipment for a fully mechanized long-wall mining system and is currently the only means for transporting bulk material in hard coal mines. To date, the AFC power train design has mainly been based on heuristics obtained via experience, coupled with simple calculations, which cannot take the dynamic behaviors and coupling effects of the components into consideration. Therefore, model-based and simulation-driven design is preferred. In this paper, a new design and analysis methodology for an AFC power train is presented to achieve the optimal dynamic characteristics and transmission performance. A preliminary design procedure for a power train is first introduced. Then, a system-level hydro-mechatronic model of the power train is built to evaluate and optimize the preliminary scheme. Sub-models, including those for the motors, fluid couplers, gearboxes, and chain, are obtained according to their individual disciplines and assembled to form the system-level model. The chain sub-system is discretized into multiple finite elements. Governing equations are established for each element based on the Newton Euler approach and assembled according to the topological structure of the chain system. In order to make the new approach applicable for engineers, a design and analysis software is developed, with a graphical user interface that involves the whole design process. MATLAB/SIMULINK is used as the computational engine, and Visual C++ is adopted to develop the interactive software framework. Simulations for the SGZ1000/2000 type AFC are provided as an illustrative case study to validate the effectiveness and practicality of the model and software package.展开更多
文摘An airbag is an effective protective device for vehicle occupant safety, but may cause unexpected injury from the excessive energy of ignition when it is deployed, This paper focuses on the design of a new tubular driver airhag from the perspective of reducing the dosage of gas generant, Three different dummies were selected for computer simulation to investigate the stiffness and protection performance of the new airhag, Next, a multi-objective optimization of the 50th percentile dummy was conducted, The results show that the static volume of the new airhag is only about 113 of the volume of an ordinary one, and the injury value of each type of dummy can meet legal requirements while reducing the gas dosage by at least 30%, The combined injury index (Pcomb) decreases by 22% and the gas dosage is reduced by 32% after optimization, This study demonstrates that the new tubular driver airbag has great potential for protection in terms of reducing the gas dosage,
基金Supported by National"863"Program of China (No.2006AA04Z127) .
文摘A method for optimizing automotive doors under multiple criteria involving the side impact, stiffness, natural frequency, and structure weight is presented. Metamodeling technique is employed to construct approximations to replace the high computational simulation models. The approximating functions for stiffness and natural frequency are constructed using Taylor series approximation. Three popular approximation techniques,i.e.polynomial response surface (PRS), stepwise regression (SR), and Kriging are studied on their accuracy in the construction of side impact functions. Uniform design is employed to sample the design space of the door impact analysis. The optimization problem is solved by a multi-objective genetic algorithm. It is found that SR technique is superior to PRS and Kriging techniques in terms of accuracy in this study. The numerical results demonstrate that the method successfully generates a well-spread Pareto optimal set. From this Pareto optimal set, decision makers can select the most suitable design according to the vehicle program and its application.
文摘A new transportation technology known as personal rapid transit (PRT) is being developed by multiple different companies around the world, and one system is under commercial operations in the United Kingdom. Each design is different, but they all share a need to operate many automated transit vehicles at very close headways. Safe operation will require a level of control an order of magnitude above any current transit system. As a result, new techniques will be needed for the development and testing of the mechanical and control systems. In this paper an apparatus for developing and testing a PRT vehicle control scheme is demonstrated. This system is composed of independent modules that represent virtual vehicles, a central control system, a man-machine interface and a monitoring device. It can be used to implement and to evaluate the designed vehicle control algorithm. The vehicle control algorithm is designed and simulated in a combined simulation platform that consists of Matlab/Simulink and Labview Simulation Interface Toolkit. Simple operational scenarios are proposed for the testing of the proposed vehicle control apparatus.
基金supported by the National Natural Science Foundation of China(Grant No.51375330)the Leading Talent Project of Guangdong Province
文摘An armored face conveyor(AFC) is a key piece of equipment for a fully mechanized long-wall mining system and is currently the only means for transporting bulk material in hard coal mines. To date, the AFC power train design has mainly been based on heuristics obtained via experience, coupled with simple calculations, which cannot take the dynamic behaviors and coupling effects of the components into consideration. Therefore, model-based and simulation-driven design is preferred. In this paper, a new design and analysis methodology for an AFC power train is presented to achieve the optimal dynamic characteristics and transmission performance. A preliminary design procedure for a power train is first introduced. Then, a system-level hydro-mechatronic model of the power train is built to evaluate and optimize the preliminary scheme. Sub-models, including those for the motors, fluid couplers, gearboxes, and chain, are obtained according to their individual disciplines and assembled to form the system-level model. The chain sub-system is discretized into multiple finite elements. Governing equations are established for each element based on the Newton Euler approach and assembled according to the topological structure of the chain system. In order to make the new approach applicable for engineers, a design and analysis software is developed, with a graphical user interface that involves the whole design process. MATLAB/SIMULINK is used as the computational engine, and Visual C++ is adopted to develop the interactive software framework. Simulations for the SGZ1000/2000 type AFC are provided as an illustrative case study to validate the effectiveness and practicality of the model and software package.