Grounded ship faces up exceptionally different stability forces unlike in her normal operating condition. This critical situation must be corrected as soon as can minimize hull stress, the risk of pollution and stabil...Grounded ship faces up exceptionally different stability forces unlike in her normal operating condition. This critical situation must be corrected as soon as can minimize hull stress, the risk of pollution and stability failure. Re-floating the ship need full understanding of the impact of ground reaction (R) on the ship buoyancy and stability. Re-floating the ship has different phases and there are several immediate actions that should be taken by ship's crew; one of these phases is re-calculation of ship stability conditions. In this paper, a guide to understanding the effect of the ground reaction (R), determines the amount of ground pressure and its location. With consideration of the seabed form whether symmetric of asymmetric. Calculating the magnitude of the ground reaction (R) using different applicable methods, explaining the effect of using weight to re-float the ship by her own means, focusing on GM calculation after grounding.展开更多
This paper presents the design, analysis and experimental study of a loading system for heavy-duty nodes test based on a large-scale multi-directional in-plane loading device, which has been used in a full-scale heavy...This paper presents the design, analysis and experimental study of a loading system for heavy-duty nodes test based on a large-scale multi-directional in-plane loading device, which has been used in a full-scale heavy-duty support node test. Test loads of the support reached 6 567 kN with multi-directional loading requirements, which outrange the capacity of the available loading devices. Through the reinforcement of a large-scale multi-directional inplane loading device, the innovative design of a self-balanced load transferring device, and other arrangement considerations of the loading system, the test was implemented and the loading capacity of the ring was considerably enlarged. Due to the heavy loading requirements, some checking computations of the ring and the load transferring device outranged the limit of the Chinese national code "Code for Design of Steel Structures (GB 50017—2003)", thus elastic-plastic finite element (FE) analysis was carried out on the two devices, and also the real-time monitoring on the whole loading systems during experiments to ensure test safety. FE analysis and test results show that the loading system worked elastically during experiments.展开更多
Doxorubicin (DOX) is widely used in cancer therapy. However, its application is sometimes limited by its adverse cardiotoxicity and delivery pathways. In our study, we prepared a topical implantable delivery device ...Doxorubicin (DOX) is widely used in cancer therapy. However, its application is sometimes limited by its adverse cardiotoxicity and delivery pathways. In our study, we prepared a topical implantable delivery device for controlled drug release and site-specific treatment. The core region consisted of poly (lactic co-glycolic acid) and poly-caprolactone, whereas the shell region was composed of cross-linked gelatin. DOX was enclosed in the core region of a core-shell nanofiber obtained by electrospinning. This implantable delivery device was implanted on the top of the melanoma in a mouse model, which had shown a DOX-controlled release profile with sustained and sufficient local concentration against melanoma growth in mice with negligible side effects. Compared with the traditional intravenous administration, the implantable device allows precisely localized treatment and therefore can reduce the dose, decrease the injection frequency, and ensure antitumor efficacy associated with lower side effects to normal tissues. Using a coaxial electrospinning process, it is promising to deliver different hydrophohic or hydrophilic drugs for direct tumor site-specific therapy without large systemic doses and minimized systemic toxicity.展开更多
文摘Grounded ship faces up exceptionally different stability forces unlike in her normal operating condition. This critical situation must be corrected as soon as can minimize hull stress, the risk of pollution and stability failure. Re-floating the ship need full understanding of the impact of ground reaction (R) on the ship buoyancy and stability. Re-floating the ship has different phases and there are several immediate actions that should be taken by ship's crew; one of these phases is re-calculation of ship stability conditions. In this paper, a guide to understanding the effect of the ground reaction (R), determines the amount of ground pressure and its location. With consideration of the seabed form whether symmetric of asymmetric. Calculating the magnitude of the ground reaction (R) using different applicable methods, explaining the effect of using weight to re-float the ship by her own means, focusing on GM calculation after grounding.
基金Supported by National Natural Science Foundation of China (No. 50878066)the National Key Technology R&D Program in the 11th Five-Year Plan of China (No. 2006BAJ01B02)the Key Technologies R&D Program of Heilongjiang Province, China (No. GB02C204)
文摘This paper presents the design, analysis and experimental study of a loading system for heavy-duty nodes test based on a large-scale multi-directional in-plane loading device, which has been used in a full-scale heavy-duty support node test. Test loads of the support reached 6 567 kN with multi-directional loading requirements, which outrange the capacity of the available loading devices. Through the reinforcement of a large-scale multi-directional inplane loading device, the innovative design of a self-balanced load transferring device, and other arrangement considerations of the loading system, the test was implemented and the loading capacity of the ring was considerably enlarged. Due to the heavy loading requirements, some checking computations of the ring and the load transferring device outranged the limit of the Chinese national code "Code for Design of Steel Structures (GB 50017—2003)", thus elastic-plastic finite element (FE) analysis was carried out on the two devices, and also the real-time monitoring on the whole loading systems during experiments to ensure test safety. FE analysis and test results show that the loading system worked elastically during experiments.
基金supported by the Project Electro Med (11115313) from the Danish Council for Strategic Researchthe National Science Fund for Excellent Young Scholars (31622026)+3 种基金the National Natural Science Foundation of China (U1532122, 21320102003, 21471044)the National Key Research and Development Plan (2016YFA0201600, 2016YFA0203204)the National Science Fund for Distinguished Young Scholars (11425520)Youth Innovation Promotion Association of the Chinese Academy of Sciences (2014031)
文摘Doxorubicin (DOX) is widely used in cancer therapy. However, its application is sometimes limited by its adverse cardiotoxicity and delivery pathways. In our study, we prepared a topical implantable delivery device for controlled drug release and site-specific treatment. The core region consisted of poly (lactic co-glycolic acid) and poly-caprolactone, whereas the shell region was composed of cross-linked gelatin. DOX was enclosed in the core region of a core-shell nanofiber obtained by electrospinning. This implantable delivery device was implanted on the top of the melanoma in a mouse model, which had shown a DOX-controlled release profile with sustained and sufficient local concentration against melanoma growth in mice with negligible side effects. Compared with the traditional intravenous administration, the implantable device allows precisely localized treatment and therefore can reduce the dose, decrease the injection frequency, and ensure antitumor efficacy associated with lower side effects to normal tissues. Using a coaxial electrospinning process, it is promising to deliver different hydrophohic or hydrophilic drugs for direct tumor site-specific therapy without large systemic doses and minimized systemic toxicity.