This review discusses chiral-at-metal complexes and introduces enantiomorphs from assembly structure.Owing to the diverse coordination number and activity of metal ions as chiral centers, abundant structures for chira...This review discusses chiral-at-metal complexes and introduces enantiomorphs from assembly structure.Owing to the diverse coordination number and activity of metal ions as chiral centers, abundant structures for chiral selectivity, catalysis, and polarized light-response are the notable advantages of the chiral-at-metal complexes. The rational design and preparation of linear multi-dentate ligands is a good choice to improve the stability of chiral complexes, such as multi-bonding structure for high stability as a self-limiting system. The bio-significance and potential application of chiral-at-metal complexes are discussed, such as the synergistic effect of catalysis and chiral selectivity of the metal center in enzymes.Enzyme could be remolded to replace the original central metal ions with highly active rare earth or precious metal ions to form artificial metalloenzyme or to remove the ‘‘redundant" part around the metal center to improve the accessibility of substrate. The polarized light-response mechanism of chiral opsin is introduced in relation to its role in animal migration. Metal-organic frameworks(MOFs) are crystalline and porous materials built from metal nodes or clusters and organic linkers and provide the possibility to prepare artificial enantiomorphs. The preparations, applications, and characterization methods of MOF enatiomorphs are therefore introduced. We hope this review inspires researchers at all levels of their career to consider the title topic in their own research in terms of its application and potential value.展开更多
Developing efficient counter electrodes(CEs)and quantum dots made of earth-abundant and non-toxic elements is essential but still challenging for quantum dot-sensitized solar cells(QDSSCs).Here,we report a facile stra...Developing efficient counter electrodes(CEs)and quantum dots made of earth-abundant and non-toxic elements is essential but still challenging for quantum dot-sensitized solar cells(QDSSCs).Here,we report a facile strategy to prepare self-supported and robust CoS_2and NiS nanocrystals-assembled nanosheets directly grown on carbon paper(MS_xNS@CP)as efficient counter electrodes for QDSSCs.Such CEs integrate the merits of fast electron transfer from interconnected conductive scaffold,efficient mass transfer from hierarchically vertical nanosheet on 3D open substrate,as well as abundant highly active catalytic sites from metal sulphide nanocrystal units.As a result,QDDSCs based on such CoS_2NS@CP and NiS NS@CP CEs achieve a PCE of8.88%and 7.53%,respectively.The detailed analyses suggest that CoS_2NS@CP has the highest catalytic activity and shows the lowest charger transfer resistance,leading to the highest PCE.These findings may inspire the design and exploration of other self-supported efficient CEs by integrating highly active catalysts onto 3D conductive networks for efficient QDSSCs.展开更多
基金supported by the National Natural Science Foundation of China (21675090, 21435001, and 21375064)
文摘This review discusses chiral-at-metal complexes and introduces enantiomorphs from assembly structure.Owing to the diverse coordination number and activity of metal ions as chiral centers, abundant structures for chiral selectivity, catalysis, and polarized light-response are the notable advantages of the chiral-at-metal complexes. The rational design and preparation of linear multi-dentate ligands is a good choice to improve the stability of chiral complexes, such as multi-bonding structure for high stability as a self-limiting system. The bio-significance and potential application of chiral-at-metal complexes are discussed, such as the synergistic effect of catalysis and chiral selectivity of the metal center in enzymes.Enzyme could be remolded to replace the original central metal ions with highly active rare earth or precious metal ions to form artificial metalloenzyme or to remove the ‘‘redundant" part around the metal center to improve the accessibility of substrate. The polarized light-response mechanism of chiral opsin is introduced in relation to its role in animal migration. Metal-organic frameworks(MOFs) are crystalline and porous materials built from metal nodes or clusters and organic linkers and provide the possibility to prepare artificial enantiomorphs. The preparations, applications, and characterization methods of MOF enatiomorphs are therefore introduced. We hope this review inspires researchers at all levels of their career to consider the title topic in their own research in terms of its application and potential value.
基金supported by the National Natural Science Foundation of China (21573249, 51732004)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB12020100)
文摘Developing efficient counter electrodes(CEs)and quantum dots made of earth-abundant and non-toxic elements is essential but still challenging for quantum dot-sensitized solar cells(QDSSCs).Here,we report a facile strategy to prepare self-supported and robust CoS_2and NiS nanocrystals-assembled nanosheets directly grown on carbon paper(MS_xNS@CP)as efficient counter electrodes for QDSSCs.Such CEs integrate the merits of fast electron transfer from interconnected conductive scaffold,efficient mass transfer from hierarchically vertical nanosheet on 3D open substrate,as well as abundant highly active catalytic sites from metal sulphide nanocrystal units.As a result,QDDSCs based on such CoS_2NS@CP and NiS NS@CP CEs achieve a PCE of8.88%and 7.53%,respectively.The detailed analyses suggest that CoS_2NS@CP has the highest catalytic activity and shows the lowest charger transfer resistance,leading to the highest PCE.These findings may inspire the design and exploration of other self-supported efficient CEs by integrating highly active catalysts onto 3D conductive networks for efficient QDSSCs.