In a manufacturing industry, mixed model assembly line(MMAL) is preferred in order to meet the variety in product demand. MMAL balancing helps in assembling products with similar characteristics in a random fashion. T...In a manufacturing industry, mixed model assembly line(MMAL) is preferred in order to meet the variety in product demand. MMAL balancing helps in assembling products with similar characteristics in a random fashion. The objective of this work aims in reducing the number of workstations, work load index between stations and within each station. As manual contribution of workers in final assembly line is more, ergonomics is taken as an additional objective function. Ergonomic risk level of a workstation is evaluated using a parameter called accumulated risk posture(ARP), which is calculated using rapid upper limb assessment(RULA) check sheet. This work is based on the case study of an MMAL problem in Rane(Madras) Ltd.(India), in which a problem based genetic algorithm(GA) has been proposed to minimize the mentioned objectives. The working of the genetic operators such as selection, crossover and mutation has been modified with respect to the addressed MMAL problem. The results show that there is a significant impact over productivity and the process time of the final assembled product, i.e., the rate of production is increased by 39.5% and the assembly time for one particular model is reduced to 13 min from existing 18 min. Also, the space required using the proposed assembly line is only 200 m2 against existing 350 m2. Further, the algorithm helps in reducing workers fatigue(i.e., ergonomic friendly).展开更多
A new way to solve the scheduling problem ofgarment assembly line based on genetic algorithmwas proposed. The chromosome was decoded usingtask precedence relation and after the operation ofreproduction, crossover and ...A new way to solve the scheduling problem ofgarment assembly line based on genetic algorithmwas proposed. The chromosome was decoded usingtask precedence relation and after the operation ofreproduction, crossover and mutation, the globaloptimal result can be obtained. Fitness function wasrepresented by smoothness Index ( SI ). Thesimulation shows that the method proposed in thispaper is better than the conventional way and theoptimized solution can be got in this way.展开更多
A weakness of unforgeability is found in Ma and Chen scheme, and the root cause is the susceptive linear design in the scheme. In order to avoid the weakness and susceptive linear design, an improvement by means of tw...A weakness of unforgeability is found in Ma and Chen scheme, and the root cause is the susceptive linear design in the scheme. In order to avoid the weakness and susceptive linear design, an improvement by means of two mechanisms including quadratic residue and composite discrete logarithm is proposed, which can defeat the forgery attacks in Ma and Chen scheme. The new scheme remains good confidentiality, public verifiability and efficiency.展开更多
A balancing problem for a mixed model assembly line with uncertain task processmg Ume anO daily model mixed changes is considered, and the objective is to minimize the work variances between stations in the line. For ...A balancing problem for a mixed model assembly line with uncertain task processmg Ume anO daily model mixed changes is considered, and the objective is to minimize the work variances between stations in the line. For the balancing problem for the scenario-based robust assembly line with a finitely large number of potential scenarios, the direct solution methodology considering all potential scenarios is quite time-consuming. A scenario relaxation algorithm that embeds genetic al- gorithm is developed. This new algorithm guarantees termination at an optimal robust solution with relatively short running time, and makes it possible to solve robust problems with large quantities of potential scenarios. Extensive computational results are reported to show the efficiency and effectiveness of the proposed algorithm.展开更多
基金support and help of many individuals in the SASTRA University
文摘In a manufacturing industry, mixed model assembly line(MMAL) is preferred in order to meet the variety in product demand. MMAL balancing helps in assembling products with similar characteristics in a random fashion. The objective of this work aims in reducing the number of workstations, work load index between stations and within each station. As manual contribution of workers in final assembly line is more, ergonomics is taken as an additional objective function. Ergonomic risk level of a workstation is evaluated using a parameter called accumulated risk posture(ARP), which is calculated using rapid upper limb assessment(RULA) check sheet. This work is based on the case study of an MMAL problem in Rane(Madras) Ltd.(India), in which a problem based genetic algorithm(GA) has been proposed to minimize the mentioned objectives. The working of the genetic operators such as selection, crossover and mutation has been modified with respect to the addressed MMAL problem. The results show that there is a significant impact over productivity and the process time of the final assembled product, i.e., the rate of production is increased by 39.5% and the assembly time for one particular model is reduced to 13 min from existing 18 min. Also, the space required using the proposed assembly line is only 200 m2 against existing 350 m2. Further, the algorithm helps in reducing workers fatigue(i.e., ergonomic friendly).
基金Financed by Henan provincial Fund (No. 0324300201)
文摘A new way to solve the scheduling problem ofgarment assembly line based on genetic algorithmwas proposed. The chromosome was decoded usingtask precedence relation and after the operation ofreproduction, crossover and mutation, the globaloptimal result can be obtained. Fitness function wasrepresented by smoothness Index ( SI ). Thesimulation shows that the method proposed in thispaper is better than the conventional way and theoptimized solution can be got in this way.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60273049 and 90104005).
文摘A weakness of unforgeability is found in Ma and Chen scheme, and the root cause is the susceptive linear design in the scheme. In order to avoid the weakness and susceptive linear design, an improvement by means of two mechanisms including quadratic residue and composite discrete logarithm is proposed, which can defeat the forgery attacks in Ma and Chen scheme. The new scheme remains good confidentiality, public verifiability and efficiency.
基金Supported by the National High Technology Research and Development Programme of China (No. 2006AA04Z160) and the National Natural Science Foundation of China ( No. 60874066).
文摘A balancing problem for a mixed model assembly line with uncertain task processmg Ume anO daily model mixed changes is considered, and the objective is to minimize the work variances between stations in the line. For the balancing problem for the scenario-based robust assembly line with a finitely large number of potential scenarios, the direct solution methodology considering all potential scenarios is quite time-consuming. A scenario relaxation algorithm that embeds genetic al- gorithm is developed. This new algorithm guarantees termination at an optimal robust solution with relatively short running time, and makes it possible to solve robust problems with large quantities of potential scenarios. Extensive computational results are reported to show the efficiency and effectiveness of the proposed algorithm.