The machining principle and realization method for the continuous generative grinding face gear by a worm wheel are introduced. Based on a five-axis linked CNC grinding machine, a new method is presented to deprive th...The machining principle and realization method for the continuous generative grinding face gear by a worm wheel are introduced. Based on a five-axis linked CNC grinding machine, a new method is presented to deprive the equation of face gear error tooth surface by assuming the tool surface as the error surface, where actual tool installation position error is introduced into the equation of virtual shaper cutter. Surface equations and 3-D models for the face gear and the worm wheel involving four kinds of tool installation errors are established. When compared, the face gear tooth surface machined in VERICUT software for simulation based on this new method and the one obtained based on real process(grinding face gear by using a theoretical worm wheel with actual position errors) are found to be coincident, which proves the validity and feasibility of this new method. By using mesh planning for the rotating projection plane of the face gear work tooth surface, the deviation values of the tooth surface and the difference surface are acquired, and the influence of four kinds of errors on the face gear tooth surface is analyzed. Accordingly, this work provides a theoretical reference for assembly craft of worm wheel, improvement of face gear machining accuracy and modification of error tooth surface.展开更多
In this paper, primary manufacturing and assembling errors of three-ring gear reducer (TRGR) are analyzed. TRGR is a new transmission type whose eccentric phase difference between middle ring plate and side ring pla...In this paper, primary manufacturing and assembling errors of three-ring gear reducer (TRGR) are analyzed. TRGR is a new transmission type whose eccentric phase difference between middle ring plate and side ring plates is 120°, Its mass of middle ring plate is equal to that of side ring plate or 180°, and its inass of middle ring plate is twice of that of side ring plate, which affects load distribution between ring plates. The primary manufacturing and assembling errors include eccentric error of eccentric sheath E111, internal gear plate E1 and output external gear E11. A new theoretical method is presented in this paper, which converts load on ring plates into the dedendum bending stress of ring plate to calculate load distribution coefficient ( LDC ), by means of gap element method (GEM), one of finite element method (FEM). The theoretical calculation and experimental study, which measures ring plate dedendum bending stress by means of sticking strain gauges on the dedendum of middle ring plate internal gear and side ring plate internal gears, are presented. The theoretical calculation and comparison with experiment result of LDC are implemented an two kinds of three-ring gear reducers whose eccentric phase difference between eccentric sheaths is 120° and 180°respectively. The research indicates that the result of theoretical calculation is consistent with that of experimental study. That is to say, the theoretical calculation method is feasible.展开更多
A CAD/CAE system of the ring-type planetary reducer with small tooth number difference is presented. It is a parameterized CAD/CAE system adopting the object-oriented technique and comprising in itself the geometric f...A CAD/CAE system of the ring-type planetary reducer with small tooth number difference is presented. It is a parameterized CAD/CAE system adopting the object-oriented technique and comprising in itself the geometric feature database (including the modules of ring-plates with inner teeth, eccentric shaft modules and output shaft modules), standard component database and material database. In comparison with design by handwork , this computer aided design and analysis system has the advantages of improved quality, shortened design period and reduced cost. The reliability of the system has been verified by a illustrative example.展开更多
This work deals with an experimental investigation of the machining characteristics of Micro Wire Electrical Discharge Machining (MWEDM). The MWEDM process consists of only one cutting operation varying with machining...This work deals with an experimental investigation of the machining characteristics of Micro Wire Electrical Discharge Machining (MWEDM). The MWEDM process consists of only one cutting operation varying with machining conditions. Experimental results show that the peak current and pulse duration have an obvious influence on surface roughness and machining time, and they also have an optimum value for the highest cutting speed. The servo reference voltage influences the surface roughness and machining time as well. In particular, the surface characteristics of work-pieces and a micro wire electrode were analyzed in detail too. Utilizing a micro wire electrode with diameter 30μm, MWEDM can machine a micro slot 38μm wide, which proves that the discharge gap can be controlled not more than 4μm. It can also machine micro gears respectively with a module 40μm, thickness 1mm, and a module 100μm, thickness 3.5mm. All kinds of micro shaped holes and complex micro parts can be easily machined as well.展开更多
The counter-meshing gears (CMG) discriminator is a mechanically coded lock, which is used to prevent the occurrence of High Consequence Events. This paper advanced a new kind of self-assembly metal CMG discriminator...The counter-meshing gears (CMG) discriminator is a mechanically coded lock, which is used to prevent the occurrence of High Consequence Events. This paper advanced a new kind of self-assembly metal CMG discriminator based on multi-exposure LiGA like process and sacrificial layer process. The new CMG discriminator has the following characters except low cost: 1) it has only discrimination teeth sections; 2) the thickness of each gear layer exceeds one hundred micrometers; 3) it is axially driven by a separate dectronic magnetic micromotor directly; 4) its CMG is made of metal and is batch fabricated in the assembled state; 5) it is prevented from rotating in the opposite direction by pawl/ratchet wheel mechanism; 6) it has simpler structure. This device has better strength and reliability in abnormal environment compared to the existing surface micro machining (SMM) discriminator.展开更多
A new nonlinear transverse-torsional coupled model with backlash and bearing clearance was proposed for planetary gear set. Meanwhile, sun gear and planet's eccentricity errors, static transmission error, and time...A new nonlinear transverse-torsional coupled model with backlash and bearing clearance was proposed for planetary gear set. Meanwhile, sun gear and planet's eccentricity errors, static transmission error, and time-varying meshing stiffness were taken into consideration. The differential governing equations of motion were solved by employing variable step-size Rung-Kutta numerical integration method. The behavior of dynamic load sharing characteristics affected by the system parameters including input rate, sun gear's supporting stiffness and eccentricity error, planet's eccentricity error, sun gear's bearing clearance, backlashes of sun-planet and planet-ring meshes were investigated qualitatively and systematically. Some theoretical results are summarized at last which extend the current understanding of the dynamic load sharing behavior of planet gear train, enrich the related literature and provide references for the design of planetary gear train.展开更多
The high precision assemblies with considerable radial interference should be accompanied by heating and cooling processes.However,the mechanical properties of metals are greatly affected by thermal operations.So,for ...The high precision assemblies with considerable radial interference should be accompanied by heating and cooling processes.However,the mechanical properties of metals are greatly affected by thermal operations.So,for evaluating the stress distribution and distortion of teeth profiles in a gear/shaft assembly,a transient thermal analysis is necessary for finding the change in mechanical properties.The friction on the contact surface is another important parameter in interaction of the gear with the shaft.Evaluating the gear stress and deformation fields for several modes of heat transfer and friction coefficients showed that the maximum radial or tangential stresses on contact surface of the joint may have more than 8%increase by increasing friction coefficient;while the intensity of heat transfer at cooling stage has lower effect on stress distribution.展开更多
In order to improve the processing precision and shorten the hob manufacturing cycle of the face gear,a precision generating hobbing method for face gear with the assembly spherical hob is proposed.Firstly,the evoluti...In order to improve the processing precision and shorten the hob manufacturing cycle of the face gear,a precision generating hobbing method for face gear with the assembly spherical hob is proposed.Firstly,the evolution of the cylindrical gear to spherical hob basic worm is analyzed,then the spherical hob basic worm is designed,thus the basic worm and spiral angle equation of spherical hob are obtained.Secondly,based on the design method of the existing hob,the development method of the assembly spherical hob is analyzed,the cutter tooth and the cutter substrate of the assembly hob are designed,and the whole assembly is finished.Thirdly,based on the need of face gear hobbing,a numerical control machine for gear hobbing is developed,and the equation of the face gear is obtained.Fourth,for reducing the face gear processing errors induced by equivalent installation errors,the error analysis model is established and the impacts of each error on the gear tooth surface are analyzed.Finally,the assembly spherical hob is manufactured and the gear hobbing test is completed.According to the measurement results,the processing parameters of face gear hobbing are modified,and the deviation of tooth surface is significantly reduced.展开更多
A multi-try counter-meshing gears (CMG) discrimination device based on micro electromechani-cal system (MEMS) technology was designed for some specified information fields. The discrimination device consists of two gr...A multi-try counter-meshing gears (CMG) discrimination device based on micro electromechani-cal system (MEMS) technology was designed for some specified information fields. The discrimination device consists of two groups of metal CMG, two pawl/ratchet mechanisms, two driving micromotors and two re-setting micromotors, which make the CMG withdraw by raising the pawls. The energy-coupling element is a photoelectric sensor with a circular plate which is notched. Micromotor is fabricated using the ultraviolet LiGA (UV-LiGA) fabrication process and precision mechanical engineering. The discrimination device has the function which can automatically reset, with the correct resetting code, it can be tried another times.展开更多
Gear drives are one of the most common parts in many rotating machinery. If the gear drive runs under lower torque load, nonlinear effects like gear mesh interruption can occur and vibration is accompanied by impact m...Gear drives are one of the most common parts in many rotating machinery. If the gear drive runs under lower torque load, nonlinear effects like gear mesh interruption can occur and vibration is accompanied by impact motions of the gears, This paper presents an original method of the mathematical modelling of gear drive nonlinear vibrations by using the modal synthesis method with degrees of freedom number reduction. The model respects nonlinearities caused by gear mesh interruption, parametric gearing excitation caused by time-varying meshing stiffness and nonlinear contact forces acting between journals of the rolling-element bearings and the outer housing. The nonlinear model is then used for investigation of gear drive vibration, especially for constant gear mesh determination. The theoretical method is applied for investigating of test gear drive nonlinear vibration.展开更多
基金Projects(51535012,U1604255)supported by the National Natural Science Foundation of ChinaProject(2016JC2001)supported by the Key Research and Development Project of Hunan Province,China
文摘The machining principle and realization method for the continuous generative grinding face gear by a worm wheel are introduced. Based on a five-axis linked CNC grinding machine, a new method is presented to deprive the equation of face gear error tooth surface by assuming the tool surface as the error surface, where actual tool installation position error is introduced into the equation of virtual shaper cutter. Surface equations and 3-D models for the face gear and the worm wheel involving four kinds of tool installation errors are established. When compared, the face gear tooth surface machined in VERICUT software for simulation based on this new method and the one obtained based on real process(grinding face gear by using a theoretical worm wheel with actual position errors) are found to be coincident, which proves the validity and feasibility of this new method. By using mesh planning for the rotating projection plane of the face gear work tooth surface, the deviation values of the tooth surface and the difference surface are acquired, and the influence of four kinds of errors on the face gear tooth surface is analyzed. Accordingly, this work provides a theoretical reference for assembly craft of worm wheel, improvement of face gear machining accuracy and modification of error tooth surface.
基金Sponsored by the National Natural Science Foundation of China(Grant No.59575007).
文摘In this paper, primary manufacturing and assembling errors of three-ring gear reducer (TRGR) are analyzed. TRGR is a new transmission type whose eccentric phase difference between middle ring plate and side ring plates is 120°, Its mass of middle ring plate is equal to that of side ring plate or 180°, and its inass of middle ring plate is twice of that of side ring plate, which affects load distribution between ring plates. The primary manufacturing and assembling errors include eccentric error of eccentric sheath E111, internal gear plate E1 and output external gear E11. A new theoretical method is presented in this paper, which converts load on ring plates into the dedendum bending stress of ring plate to calculate load distribution coefficient ( LDC ), by means of gap element method (GEM), one of finite element method (FEM). The theoretical calculation and experimental study, which measures ring plate dedendum bending stress by means of sticking strain gauges on the dedendum of middle ring plate internal gear and side ring plate internal gears, are presented. The theoretical calculation and comparison with experiment result of LDC are implemented an two kinds of three-ring gear reducers whose eccentric phase difference between eccentric sheaths is 120° and 180°respectively. The research indicates that the result of theoretical calculation is consistent with that of experimental study. That is to say, the theoretical calculation method is feasible.
基金Funded by National Natural Science Foundation of China (50005025).
文摘A CAD/CAE system of the ring-type planetary reducer with small tooth number difference is presented. It is a parameterized CAD/CAE system adopting the object-oriented technique and comprising in itself the geometric feature database (including the modules of ring-plates with inner teeth, eccentric shaft modules and output shaft modules), standard component database and material database. In comparison with design by handwork , this computer aided design and analysis system has the advantages of improved quality, shortened design period and reduced cost. The reliability of the system has been verified by a illustrative example.
文摘This work deals with an experimental investigation of the machining characteristics of Micro Wire Electrical Discharge Machining (MWEDM). The MWEDM process consists of only one cutting operation varying with machining conditions. Experimental results show that the peak current and pulse duration have an obvious influence on surface roughness and machining time, and they also have an optimum value for the highest cutting speed. The servo reference voltage influences the surface roughness and machining time as well. In particular, the surface characteristics of work-pieces and a micro wire electrode were analyzed in detail too. Utilizing a micro wire electrode with diameter 30μm, MWEDM can machine a micro slot 38μm wide, which proves that the discharge gap can be controlled not more than 4μm. It can also machine micro gears respectively with a module 40μm, thickness 1mm, and a module 100μm, thickness 3.5mm. All kinds of micro shaped holes and complex micro parts can be easily machined as well.
文摘The counter-meshing gears (CMG) discriminator is a mechanically coded lock, which is used to prevent the occurrence of High Consequence Events. This paper advanced a new kind of self-assembly metal CMG discriminator based on multi-exposure LiGA like process and sacrificial layer process. The new CMG discriminator has the following characters except low cost: 1) it has only discrimination teeth sections; 2) the thickness of each gear layer exceeds one hundred micrometers; 3) it is axially driven by a separate dectronic magnetic micromotor directly; 4) its CMG is made of metal and is batch fabricated in the assembled state; 5) it is prevented from rotating in the opposite direction by pawl/ratchet wheel mechanism; 6) it has simpler structure. This device has better strength and reliability in abnormal environment compared to the existing surface micro machining (SMM) discriminator.
基金Project(51105194)supported by the National Natural Science Foundation of ChinaProject(20113218110017)supported by the Doctoral Program Foundation of Institutions of Higher Education of China+2 种基金Project supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,ChinaProject(CXZZ11_0199)supported by the Funding of Jiangsu Innovation Program for Graduate Education,ChinaProjects(NZ2013303,NZ2014201)supported by the Fundamental Research Funds for the Central Universities,China
文摘A new nonlinear transverse-torsional coupled model with backlash and bearing clearance was proposed for planetary gear set. Meanwhile, sun gear and planet's eccentricity errors, static transmission error, and time-varying meshing stiffness were taken into consideration. The differential governing equations of motion were solved by employing variable step-size Rung-Kutta numerical integration method. The behavior of dynamic load sharing characteristics affected by the system parameters including input rate, sun gear's supporting stiffness and eccentricity error, planet's eccentricity error, sun gear's bearing clearance, backlashes of sun-planet and planet-ring meshes were investigated qualitatively and systematically. Some theoretical results are summarized at last which extend the current understanding of the dynamic load sharing behavior of planet gear train, enrich the related literature and provide references for the design of planetary gear train.
文摘The high precision assemblies with considerable radial interference should be accompanied by heating and cooling processes.However,the mechanical properties of metals are greatly affected by thermal operations.So,for evaluating the stress distribution and distortion of teeth profiles in a gear/shaft assembly,a transient thermal analysis is necessary for finding the change in mechanical properties.The friction on the contact surface is another important parameter in interaction of the gear with the shaft.Evaluating the gear stress and deformation fields for several modes of heat transfer and friction coefficients showed that the maximum radial or tangential stresses on contact surface of the joint may have more than 8%increase by increasing friction coefficient;while the intensity of heat transfer at cooling stage has lower effect on stress distribution.
基金Project(9140xx8020212xx) supported by the Advanced Research Foundation,ChinaProject(GZ2018KF003) supported by the State Key Laboratory of Smart Manufacturing for Special Vehicles and Transmission System,China
文摘In order to improve the processing precision and shorten the hob manufacturing cycle of the face gear,a precision generating hobbing method for face gear with the assembly spherical hob is proposed.Firstly,the evolution of the cylindrical gear to spherical hob basic worm is analyzed,then the spherical hob basic worm is designed,thus the basic worm and spiral angle equation of spherical hob are obtained.Secondly,based on the design method of the existing hob,the development method of the assembly spherical hob is analyzed,the cutter tooth and the cutter substrate of the assembly hob are designed,and the whole assembly is finished.Thirdly,based on the need of face gear hobbing,a numerical control machine for gear hobbing is developed,and the equation of the face gear is obtained.Fourth,for reducing the face gear processing errors induced by equivalent installation errors,the error analysis model is established and the impacts of each error on the gear tooth surface are analyzed.Finally,the assembly spherical hob is manufactured and the gear hobbing test is completed.According to the measurement results,the processing parameters of face gear hobbing are modified,and the deviation of tooth surface is significantly reduced.
基金the National High Technology Re-search and Development Program (863) of China(No. 2003AA404210, 2005AA404250, 2003AA404210,2006AA01Z443)
文摘A multi-try counter-meshing gears (CMG) discrimination device based on micro electromechani-cal system (MEMS) technology was designed for some specified information fields. The discrimination device consists of two groups of metal CMG, two pawl/ratchet mechanisms, two driving micromotors and two re-setting micromotors, which make the CMG withdraw by raising the pawls. The energy-coupling element is a photoelectric sensor with a circular plate which is notched. Micromotor is fabricated using the ultraviolet LiGA (UV-LiGA) fabrication process and precision mechanical engineering. The discrimination device has the function which can automatically reset, with the correct resetting code, it can be tried another times.
文摘Gear drives are one of the most common parts in many rotating machinery. If the gear drive runs under lower torque load, nonlinear effects like gear mesh interruption can occur and vibration is accompanied by impact motions of the gears, This paper presents an original method of the mathematical modelling of gear drive nonlinear vibrations by using the modal synthesis method with degrees of freedom number reduction. The model respects nonlinearities caused by gear mesh interruption, parametric gearing excitation caused by time-varying meshing stiffness and nonlinear contact forces acting between journals of the rolling-element bearings and the outer housing. The nonlinear model is then used for investigation of gear drive vibration, especially for constant gear mesh determination. The theoretical method is applied for investigating of test gear drive nonlinear vibration.