By using electric power data,observational station temperature data in Beijing,CN05.1 temperature data,ERA5 atmospheric reanalysis data,and ERSST.v3 b sea surface temperature(SST) data,it is found that summer(JulyAugu...By using electric power data,observational station temperature data in Beijing,CN05.1 temperature data,ERA5 atmospheric reanalysis data,and ERSST.v3 b sea surface temperature(SST) data,it is found that summer(JulyAugust) electric power demand in Beijing is remarkably positively correlated with the previous spring(MarchApril) tropical North Atlantic(TNA) SST anomaly(SSTA).The possible physical mechanism of the TNA SSTA affecting summer electric power in Beijing is also revealed.When a positive SSTA occurs in the TNA during spring,anomalous easterlies prevail over the tropical central Pacific,which can persist to the following summer.Trade winds are thus enhanced over the northern Pacific,which favors a strengthening of upwelling cold water in the tropical central-eastern Pacific.As a result,a negative SSTA appears in the central-eastern Pacific in summer,which means a La Nina event is triggered by the previous TNA SSTA through the Bjerknes feedback.During the La Nina event,an anomalous anticyclonic circulation occupies the northwestern Pacific.The southerly anomalies at the western edge of this anomalous anticyclone strengthen the transportation of warm and humid airflow from the low latitudes to North China,where Beijing is located,causing higher summer temperatures and increased electricity usage for air conditioning,and vice versa.The results of this study might provide a new scientific basis and dues for the seasonal prediction of summer electric power demand in Beijing.展开更多
Atmospheric particle samples were collected at an urban site of Datong, Shanxi Province, during December 2004 and their element concentrations at different sizes were analyzed by particle-induced X-ray emission (PIXE)...Atmospheric particle samples were collected at an urban site of Datong, Shanxi Province, during December 2004 and their element concentrations at different sizes were analyzed by particle-induced X-ray emission (PIXE). Analysis of the observation data showed that particle pollution was heavy in winter at Datong and that concentrations of most elements were high in the coarse range. Factor analysis (FA) results indicated that the soil and dust, coal combustion dust, and industry dust are main sources for atmospheric particles in winter at Datong. The enrichment factors of element concentrations showed that particle pollution at Datong impacts the down-wind region-Beijing-in the dust season.展开更多
基金supported by the National Natural Science Foundation of China [grant number 42088101]the National Key R&D Program of China [grant number 2018YFC1505604]the National Natural Science Foundation of China [grant numbers 42005016 and 41905061]。
文摘By using electric power data,observational station temperature data in Beijing,CN05.1 temperature data,ERA5 atmospheric reanalysis data,and ERSST.v3 b sea surface temperature(SST) data,it is found that summer(JulyAugust) electric power demand in Beijing is remarkably positively correlated with the previous spring(MarchApril) tropical North Atlantic(TNA) SST anomaly(SSTA).The possible physical mechanism of the TNA SSTA affecting summer electric power in Beijing is also revealed.When a positive SSTA occurs in the TNA during spring,anomalous easterlies prevail over the tropical central Pacific,which can persist to the following summer.Trade winds are thus enhanced over the northern Pacific,which favors a strengthening of upwelling cold water in the tropical central-eastern Pacific.As a result,a negative SSTA appears in the central-eastern Pacific in summer,which means a La Nina event is triggered by the previous TNA SSTA through the Bjerknes feedback.During the La Nina event,an anomalous anticyclonic circulation occupies the northwestern Pacific.The southerly anomalies at the western edge of this anomalous anticyclone strengthen the transportation of warm and humid airflow from the low latitudes to North China,where Beijing is located,causing higher summer temperatures and increased electricity usage for air conditioning,and vice versa.The results of this study might provide a new scientific basis and dues for the seasonal prediction of summer electric power demand in Beijing.
基金supported by Financial Project of the Beijing Municipal Financial Bureau (No. PXM2008_ 178305_06995)the Pilot Project of the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-Q11-03)the 100 Talents Program (Aerosol Characteristics and Its Climatic Impact) of the Chinese Academy of Sciences
文摘Atmospheric particle samples were collected at an urban site of Datong, Shanxi Province, during December 2004 and their element concentrations at different sizes were analyzed by particle-induced X-ray emission (PIXE). Analysis of the observation data showed that particle pollution was heavy in winter at Datong and that concentrations of most elements were high in the coarse range. Factor analysis (FA) results indicated that the soil and dust, coal combustion dust, and industry dust are main sources for atmospheric particles in winter at Datong. The enrichment factors of element concentrations showed that particle pollution at Datong impacts the down-wind region-Beijing-in the dust season.